This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2024 Spain Mathematical Olympiad, 6

Let $a$, $b$ and $n$ be positive integers, satisfying that $bn$ divides $an-a+1$. Let $\alpha=a/b$. Prove that, when the numbers $\lfloor\alpha\rfloor,\lfloor2\alpha\rfloor,\dots,\lfloor(n-1)\alpha\rfloor$ are divided by $n$, the residues are $1,2,\dots,n-1$, in some order.