This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

2013 Iran MO (3rd Round), 1

Let $p$ a prime number and $d$ a divisor of $p-1$. Find the product of elements in $\mathbb Z_p$ with order $d$. ($\mod p$). (10 points)

1997 Romania Team Selection Test, 2

Suppose that $A$ be the set of all positive integer that can write in form $a^2+2b^2$ (where $a,b\in\mathbb {Z}$ and $b$ is not equal to $0$). Show that if $p$ be a prime number and $p^2\in A$ then $p\in A$. [i]Marcel Tena[/i]