This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 7

2016 Iran Team Selection Test, 4

Let $n$ be a fixed positive integer. Find the maximum possible value of \[ \sum_{1 \le r < s \le 2n} (s-r-n)x_rx_s, \] where $-1 \le x_i \le 1$ for all $i = 1, \cdots , 2n$.

2019 Romanian Master of Mathematics Shortlist, original P6

Let $P(x)$ be a nonconstant complex coefficient polynomial and let $Q(x,y)=P(x)-P(y).$ Suppose that polynomial $Q(x,y)$ has exactly $k$ linear factors unproportional two by tow (without counting repetitons). Let $R(x,y)$ be factor of $Q(x,y)$ of degree strictly smaller than $k$. Prove that $R(x,y)$ is a product of linear polynomials. [b]Note: [/b] The [i]degree[/i] of nontrivial polynomial $\sum_{m}\sum_{n}c_{m,n}x^{m}y^{n}$ is the maximum of $m+n$ along all nonzero coefficients $c_{m,n}.$ Two polynomials are [i]proportional[/i] if one of them is the other times a complex constant. [i]Proposed by Navid Safaie[/i]

2016 Taiwan TST Round 1, 2

Let $n$ be a fixed positive integer. Find the maximum possible value of \[ \sum_{1 \le r < s \le 2n} (s-r-n)x_rx_s, \] where $-1 \le x_i \le 1$ for all $i = 1, \cdots , 2n$.

2016 Ukraine Team Selection Test, 6

Let $n$ be a fixed positive integer. Find the maximum possible value of \[ \sum_{1 \le r < s \le 2n} (s-r-n)x_rx_s, \] where $-1 \le x_i \le 1$ for all $i = 1, \cdots , 2n$.

2015 IMO Shortlist, A3

Let $n$ be a fixed positive integer. Find the maximum possible value of \[ \sum_{1 \le r < s \le 2n} (s-r-n)x_rx_s, \] where $-1 \le x_i \le 1$ for all $i = 1, \cdots , 2n$.

2016 Iran Team Selection Test, 4

Let $n$ be a fixed positive integer. Find the maximum possible value of \[ \sum_{1 \le r < s \le 2n} (s-r-n)x_rx_s, \] where $-1 \le x_i \le 1$ for all $i = 1, \cdots , 2n$.

Russian TST 2019, P3

Let $P(x)$ be a nonconstant complex coefficient polynomial and let $Q(x,y)=P(x)-P(y).$ Suppose that polynomial $Q(x,y)$ has exactly $k$ linear factors unproportional two by tow (without counting repetitons). Let $R(x,y)$ be factor of $Q(x,y)$ of degree strictly smaller than $k$. Prove that $R(x,y)$ is a product of linear polynomials. [b]Note: [/b] The [i]degree[/i] of nontrivial polynomial $\sum_{m}\sum_{n}c_{m,n}x^{m}y^{n}$ is the maximum of $m+n$ along all nonzero coefficients $c_{m,n}.$ Two polynomials are [i]proportional[/i] if one of them is the other times a complex constant. [i]Proposed by Navid Safaie[/i]