This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 112

2018 China Western Mathematical Olympiad, 2

Let $n \geq 2$ be an integer. Positive reals $x_1, x_2, \cdots, x_n$ satisfy $x_1x_2 \cdots x_n = 1$. Show: $$\{x_1\} + \{x_2\} + \cdots + \{x_n\} < \frac{2n-1}{2}$$ Where $\{x\}$ denotes the fractional part of $x$.

2007 Singapore MO Open, 1

Let $x_1,x_2,\ldots,x_n$ be real numbers satisfying $x_1^2+x_2^2+\ldots+x_n^2=1$. Prove that for every integer $k\ge2$ there are integers $a_1,a_2,\ldots,a_n$, not all zero, such that $|a_i|\le k-1$ for all $i$, and $|a_1x_1+a_2x_2+\ldots+a_nx_n|\le{(k-1)\sqrt n\over k^n-1}$.

2020 Bulgaria National Olympiad, P2

Let $b_1$, $\dots$ , $b_n$ be nonnegative integers with sum $2$ and $a_0$, $a_1$, $\dots$ , $a_n$ be real numbers such that $a_0=a_n=0$ and $|a_i-a_{i-1}|\leq b_i$ for each $i=1$, $\dots$ , $n$. Prove that $$\sum_{i=1}^n(a_i+a_{i-1})b_i\leq 2$$ [hide]I believe that the original problem was for nonnegative real numbers and it was a typo on the version of the exam paper we had but I'm not sure the inequality would hold[/hide]

2016 Croatia Team Selection Test, Problem 1

Let $n \ge 1$ and $x_1, \ldots, x_n \ge 0$. Prove that $$ (x_1 + \frac{x_2}{2} + \ldots + \frac{x_n}{n}) (x_1 + 2x_2 + \ldots + nx_n) \le \frac{(n+1)^2}{4n} (x_1 + x_2 + \ldots + x_n)^2 .$$

2005 South africa National Olympiad, 5

Let $x_1,x_2,\dots,x_n$ be positive numbers with product equal to 1. Prove that there exists a $k\in\{1,2,\dots,n\}$ such that \[\frac{x_k}{k+x_1+x_2+\cdots+x_k}\ge 1-\frac{1}{\sqrt[n]{2}}.\]

2015 Saudi Arabia IMO TST, 3

Let $a_1, a_2, ...,a_n$ be positive real numbers such that $$a_1 + a_2 + ... + a_n = a_1^2 + a_2^2 + ... + a_n^2$$ Prove that $$\sum_{1\le i<j\le n} a_ia_j(1 - a_ia_j) \ge 0$$ Võ Quốc Bá Cẩn.

1966 IMO Longlists, 26

Prove the inequality [b]a.)[/b] $ \left( a_{1}+a_{2}+...+a_{k}\right) ^{2}\leq k\left( a_{1}^{2}+a_{2}^{2}+...+a_{k}^{2}\right) , $ where $k\geq 1$ is a natural number and $a_{1},$ $a_{2},$ $...,$ $a_{k}$ are arbitrary real numbers. [b]b.)[/b] Using the inequality (1), show that if the real numbers $a_{1},$ $a_{2},$ $...,$ $a_{n}$ satisfy the inequality \[ a_{1}+a_{2}+...+a_{n}\geq \sqrt{\left( n-1\right) \left( a_{1}^{2}+a_{2}^{2}+...+a_{n}^{2}\right) }, \] then all of these numbers $a_{1},$ $a_{2},$ $\ldots,$ $a_{n}$ are non-negative.

Russian TST 2017, P3

Find the largest real constant $a$ such that for all $n \geq 1$ and for all real numbers $x_0, x_1, ... , x_n$ satisfying $0 = x_0 < x_1 < x_2 < \cdots < x_n$ we have \[\frac{1}{x_1-x_0} + \frac{1}{x_2-x_1} + \dots + \frac{1}{x_n-x_{n-1}} \geq a \left( \frac{2}{x_1} + \frac{3}{x_2} + \dots + \frac{n+1}{x_n} \right)\]

2016 Iran Team Selection Test, 4

Let $n$ be a fixed positive integer. Find the maximum possible value of \[ \sum_{1 \le r < s \le 2n} (s-r-n)x_rx_s, \] where $-1 \le x_i \le 1$ for all $i = 1, \cdots , 2n$.

2016 Romania National Olympiad, 2

Let be a natural number $ n\ge 2 $ and $ n $ positive real numbers $ a_1,a_n,\ldots ,a_n $ that satisfy the inequalities $$ \sum_{j=1}^i a_j\le a_{i+1} ,\quad \forall i\in\{ 1,2,\ldots ,n-1 \} . $$ Prove that $$ \sum_{k=1}^{n-1} \frac{a_k}{a_{k+1}}\le n/2 . $$

2010 Mediterranean Mathematics Olympiad, 2

Given the positive real numbers $a_{1},a_{2},\dots,a_{n},$ such that $n>2$ and $a_{1}+a_{2}+\dots+a_{n}=1,$ prove that the inequality \[ \frac{a_{2}\cdot a_{3}\cdot\dots\cdot a_{n}}{a_{1}+n-2}+\frac{a_{1}\cdot a_{3}\cdot\dots\cdot a_{n}}{a_{2}+n-2}+\dots+\frac{a_{1}\cdot a_{2}\cdot\dots\cdot a_{n-1}}{a_{n}+n-2}\leq\frac{1}{\left(n-1\right)^{2}}\] does holds.

2020 India National Olympiad, 4

Let $n \geqslant 2$ be an integer and let $1<a_1 \le a_2 \le \dots \le a_n$ be $n$ real numbers such that $a_1+a_2+\dots+a_n=2n$. Prove that$$a_1a_2\dots a_{n-1}+a_1a_2\dots a_{n-2}+\dots+a_1a_2+a_1+2 \leqslant a_1a_2\dots a_n.$$ [i]Proposed by Kapil Pause[/i]

2005 Korea Junior Math Olympiad, 7

If positive reals $ x_1,x_2,\cdots,x_n $ satisfy $\sum_{i=1}^{n}x_i=1.$ Prove that$$\sum_{i=1}^{n}\frac{1}{1+\sum_{j=1}^{i}x_j}<\sqrt{\frac{2}{3}\sum_{i=1}^{n}\frac{1}{x_i}} $$

1985 IMO Shortlist, 18

Let $x_1, x_2, \cdots , x_n$ be positive numbers. Prove that \[\frac{x_1^2}{x_1^2+x_2x_3} + \frac{x_2^2}{x_2^2+x_3x_4} + \cdots +\frac{x_{n-1}^2}{x_{n-1}^2+x_nx_1} +\frac{x_n^2}{x_n^2+x_1x_2} \leq n-1\]

2011 Korea Junior Math Olympiad, 7

For those real numbers $x_1 , x_2 , \ldots , x_{2011}$ where each of which satisfies $0 \le x_1 \le 1$ ($i = 1 , 2 , \ldots , 2011$), find the maximum of \[ x_1^3+x_2^3+ \cdots + x_{2011}^3 - \left( x_1x_2x_3 + x_2x_3x_4 + \cdots + x_{2011}x_1x_2 \right) \]

1967 IMO Shortlist, 6

Prove the following inequality: \[\prod^k_{i=1} x_i \cdot \sum^k_{i=1} x^{n-1}_i \leq \sum^k_{i=1} x^{n+k-1}_i,\] where $x_i > 0,$ $k \in \mathbb{N}, n \in \mathbb{N}.$

2004 IMO Shortlist, 1

Let $n \geq 3$ be an integer. Let $t_1$, $t_2$, ..., $t_n$ be positive real numbers such that \[n^2 + 1 > \left( t_1 + t_2 + \cdots + t_n \right) \left( \frac{1}{t_1} + \frac{1}{t_2} + \cdots + \frac{1}{t_n} \right).\] Show that $t_i$, $t_j$, $t_k$ are side lengths of a triangle for all $i$, $j$, $k$ with $1 \leq i < j < k \leq n$.

2020 Tuymaada Olympiad, 2

Given positive real numbers $a_1, a_2, \dots, a_n$. Let \[ m = \min \left( a_1 + \frac{1}{a_2}, a_2 + \frac{1}{a_3}, \dots, a_{n - 1} + \frac{1}{a_n} , a_n + \frac{1}{a_1} \right). \] Prove the inequality \[ \sqrt[n]{a_1 a_2 \dots a_n} + \frac{1}{\sqrt[n]{a_1 a_2 \dots a_n}} \ge m. \]

1966 IMO Shortlist, 26

Prove the inequality [b]a.)[/b] $ \left( a_{1}+a_{2}+...+a_{k}\right) ^{2}\leq k\left( a_{1}^{2}+a_{2}^{2}+...+a_{k}^{2}\right) , $ where $k\geq 1$ is a natural number and $a_{1},$ $a_{2},$ $...,$ $a_{k}$ are arbitrary real numbers. [b]b.)[/b] Using the inequality (1), show that if the real numbers $a_{1},$ $a_{2},$ $...,$ $a_{n}$ satisfy the inequality \[ a_{1}+a_{2}+...+a_{n}\geq \sqrt{\left( n-1\right) \left( a_{1}^{2}+a_{2}^{2}+...+a_{n}^{2}\right) }, \] then all of these numbers $a_{1},$ $a_{2},$ $\ldots,$ $a_{n}$ are non-negative.

2016 Taiwan TST Round 1, 2

Let $n$ be a fixed positive integer. Find the maximum possible value of \[ \sum_{1 \le r < s \le 2n} (s-r-n)x_rx_s, \] where $-1 \le x_i \le 1$ for all $i = 1, \cdots , 2n$.

2015 Baltic Way, 2

Let $n$ be a positive integer and let $a_1,\cdots ,a_n$ be real numbers satisfying $0\le a_i\le 1$ for $i=1,\cdots ,n.$ Prove the inequality \[(1-{a_i}^n)(1-{a_2}^n)\cdots (1-{a_n}^n)\le (1-a_1a_2\cdots a_n)^n.\]

2016 Germany Team Selection Test, 2

The positive integers $a_1,a_2, \dots, a_n$ are aligned clockwise in a circular line with $n \geq 5$. Let $a_0=a_n$ and $a_{n+1}=a_1$. For each $i \in \{1,2,\dots,n \}$ the quotient \[ q_i=\frac{a_{i-1}+a_{i+1}}{a_i} \] is an integer. Prove \[ 2n \leq q_1+q_2+\dots+q_n < 3n. \]

2020 IMO Shortlist, A7

Let $n$ and $k$ be positive integers. Prove that for $a_1, \dots, a_n \in [1,2^k]$ one has \[ \sum_{i = 1}^n \frac{a_i}{\sqrt{a_1^2 + \dots + a_i^2}} \le 4 \sqrt{kn}. \]

2019 Teodor Topan, 4

Let be an odd natural number $ n, $ and $ n $ real numbers $ y_1\le y_2\le\cdots\le y_n $ whose sum is $ 0. $ Prove that $$ (n+2)y_{\frac{n+1}{2}}^2\le y_1^2+y_2^2+\cdots +y_n^2, $$ and specify where equality is attained. [i]Nicolae Bourbăcuț[/i]

1998 IMO Shortlist, 2

Let $r_{1},r_{2},\ldots ,r_{n}$ be real numbers greater than or equal to 1. Prove that \[ \frac{1}{r_{1} + 1} + \frac{1}{r_{2} + 1} + \cdots +\frac{1}{r_{n}+1} \geq \frac{n}{ \sqrt[n]{r_{1}r_{2} \cdots r_{n}}+1}. \]