This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 112

2016 Croatia Team Selection Test, Problem 1

Let $n \ge 1$ and $x_1, \ldots, x_n \ge 0$. Prove that $$ (x_1 + \frac{x_2}{2} + \ldots + \frac{x_n}{n}) (x_1 + 2x_2 + \ldots + nx_n) \le \frac{(n+1)^2}{4n} (x_1 + x_2 + \ldots + x_n)^2 .$$

Russian TST 2021, P3

Let $n$ and $k$ be positive integers. Prove that for $a_1, \dots, a_n \in [1,2^k]$ one has \[ \sum_{i = 1}^n \frac{a_i}{\sqrt{a_1^2 + \dots + a_i^2}} \le 4 \sqrt{kn}. \]

2004 IMO Shortlist, 7

Let ${a_1,a_2,\dots,a_n}$ be positive real numbers, ${n>1}$. Denote by $g_n$ their geometric mean, and by $A_1,A_2,\dots,A_n$ the sequence of arithmetic means defined by \[ A_k=\frac{a_1+a_2+\cdots+a_k}{k},\qquad k=1,2,\dots,n. \] Let $G_n$ be the geometric mean of $A_1,A_2,\dots,A_n$. Prove the inequality \[ n \root n\of{\frac{G_n}{A_n}}+ \frac{g_n}{G_n}\le n+1 \] and establish the cases of equality. [i]Proposed by Finbarr Holland, Ireland[/i]

1996 Taiwan National Olympiad, 2

Let $0<a\leq 1$ be a real number and let $a\leq a_{i}\leq\frac{1}{a_{i}}\forall i=\overline{1,1996}$ are real numbers. Prove that for any nonnegative real numbers $k_{i}(i=1,2,...,1996)$ such that $\sum_{i=1}^{1996}k_{i}=1$ we have $(\sum_{i=1}^{1996}k_{i}a_{i})(\sum_{i=1}^{1996}\frac{k_{i}}{a_{i}})\leq (a+\frac{1}{a})^{2}$.

2008 239 Open Mathematical Olympiad, 8

The natural numbers $x_1, x_2, \ldots , x_n$ are such that all their $2^n$ partial sums are distinct. Prove that: $$ {x_1}^2 + {x_2}^2 + \ldots + {x_n}^2 \geq \frac{4^n – 1}{3}. $$

2010 Contests, 2

Given the positive real numbers $a_{1},a_{2},\dots,a_{n},$ such that $n>2$ and $a_{1}+a_{2}+\dots+a_{n}=1,$ prove that the inequality \[ \frac{a_{2}\cdot a_{3}\cdot\dots\cdot a_{n}}{a_{1}+n-2}+\frac{a_{1}\cdot a_{3}\cdot\dots\cdot a_{n}}{a_{2}+n-2}+\dots+\frac{a_{1}\cdot a_{2}\cdot\dots\cdot a_{n-1}}{a_{n}+n-2}\leq\frac{1}{\left(n-1\right)^{2}}\] does holds.

2020 China Second Round Olympiad, 2

Let $n\geq3$ be a given integer, and let $a_1,a_2,\cdots,a_{2n},b_1,b_2,\cdots,b_{2n}$ be $4n$ nonnegative reals, such that $$a_1+a_2+\cdots+a_{2n}=b_1+b_2+\cdots+b_{2n}>0,$$ and for any $i=1,2,\cdots,2n,$ $a_ia_{i+2}\geq b_i+b_{i+1},$ where $a_{2n+1}=a_1,$ $a_{2n+2}=a_2,$ $b_{2n+1}=b_1.$ Detemine the minimum of $a_1+a_2+\cdots+a_{2n}.$

2019 Canada National Olympiad, 4

Prove that for $n>1$ and real numbers $a_0,a_1,\dots, a_n,k$ with $a_1=a_{n-1}=0$, \[|a_0|-|a_n|\leq \sum_{i=0}^{n-2}|a_i-ka_{i+1}-a_{i+2}|.\]

1971 IMO, 1

Let \[ E_n=(a_1-a_2)(a_1-a_3)\ldots(a_1-a_n)+(a_2-a_1)(a_2-a_3)\ldots(a_2-a_n)+\ldots+(a_n-a_1)(a_n-a_2)\ldots(a_n-a_{n-1}). \] Let $S_n$ be the proposition that $E_n\ge0$ for all real $a_i$. Prove that $S_n$ is true for $n=3$ and $5$, but for no other $n>2$.

2016 IMO Shortlist, A8

Find the largest real constant $a$ such that for all $n \geq 1$ and for all real numbers $x_0, x_1, ... , x_n$ satisfying $0 = x_0 < x_1 < x_2 < \cdots < x_n$ we have \[\frac{1}{x_1-x_0} + \frac{1}{x_2-x_1} + \dots + \frac{1}{x_n-x_{n-1}} \geq a \left( \frac{2}{x_1} + \frac{3}{x_2} + \dots + \frac{n+1}{x_n} \right)\]

2017 Taiwan TST Round 3, 5

Find the largest real constant $a$ such that for all $n \geq 1$ and for all real numbers $x_0, x_1, ... , x_n$ satisfying $0 = x_0 < x_1 < x_2 < \cdots < x_n$ we have \[\frac{1}{x_1-x_0} + \frac{1}{x_2-x_1} + \dots + \frac{1}{x_n-x_{n-1}} \geq a \left( \frac{2}{x_1} + \frac{3}{x_2} + \dots + \frac{n+1}{x_n} \right)\]

1999 Kazakhstan National Olympiad, 5

For real numbers $ x_1, x_2, \dots, x_n $ and $ y_1, y_2, \dots, y_n $ , the inequalities hold $ x_1 \geq x_2 \geq \ldots \geq x_n> 0 $ and $$ y_1 \geq x_1, ~ y_1y_2 \geq x_1x_2, ~ \dots, ~ y_1y_2 \dots y_n \geq x_1x_2 \dots x_n. $$ Prove that $ ny_1 + (n-1) y_2 + \dots + y_n \geq x_1 + 2x_2 + \dots + nx_n $.

2019 Balkan MO Shortlist, A4

Let $a_{ij}, i = 1, 2, \dots, m$ and $j = 1, 2, \dots, n$ be positive real numbers. Prove that \[ \sum_{i = 1}^m \left( \sum_{j = 1}^n \frac{1}{a_{ij}} \right)^{-1} \le \left( \sum_{j = 1}^n \left( \sum_{i = 1}^m a_{ij} \right)^{-1} \right)^{-1} \]

1971 IMO Shortlist, 5

Let \[ E_n=(a_1-a_2)(a_1-a_3)\ldots(a_1-a_n)+(a_2-a_1)(a_2-a_3)\ldots(a_2-a_n)+\ldots+(a_n-a_1)(a_n-a_2)\ldots(a_n-a_{n-1}). \] Let $S_n$ be the proposition that $E_n\ge0$ for all real $a_i$. Prove that $S_n$ is true for $n=3$ and $5$, but for no other $n>2$.

2001 Czech-Polish-Slovak Match, 1

Let $n\ge2$ be a natural number, and $a_i$ be positive numbers, where $i=1,2,\cdots,n.$ Show that \[\left(a_1^3+1\right)\left(a_2^3+1\right)\cdots\left(a_n^3+1\right) \geq \left(a_1^2a_2+1\right)\left(a_2^2a_3+1\right)\cdots\left(a_n^2a_1+1\right)\]

2005 Taiwan TST Round 3, 1

Let ${a_1,a_2,\dots,a_n}$ be positive real numbers, ${n>1}$. Denote by $g_n$ their geometric mean, and by $A_1,A_2,\dots,A_n$ the sequence of arithmetic means defined by \[ A_k=\frac{a_1+a_2+\cdots+a_k}{k},\qquad k=1,2,\dots,n. \] Let $G_n$ be the geometric mean of $A_1,A_2,\dots,A_n$. Prove the inequality \[ n \root n\of{\frac{G_n}{A_n}}+ \frac{g_n}{G_n}\le n+1 \] and establish the cases of equality. [i]Proposed by Finbarr Holland, Ireland[/i]

2004 All-Russian Olympiad, 4

Let $n > 3$ be a natural number, and let $x_1$, $x_2$, ..., $x_n$ be $n$ positive real numbers whose product is $1$. Prove the inequality \[ \frac {1}{1 + x_1 + x_1\cdot x_2} + \frac {1}{1 + x_2 + x_2\cdot x_3} + ... + \frac {1}{1 + x_n + x_n\cdot x_1} > 1. \]

2010 Danube Mathematical Olympiad, 5

Let $n\ge3$ be a positive integer. Find the real numbers $x_1\ge0,\ldots,x_n\ge 0$, with $x_1+x_2+\ldots +x_n=n$, for which the expression \[(n-1)(x_1^2+x_2^2+\ldots+x_n^2)+nx_1x_2\ldots x_n\] takes a minimal value.

2019 China Second Round Olympiad, 2

Let $a_1,a_2,\cdots,a_n$ be integers such that $1=a_1\le a_2\le \cdots\le a_{2019}=99$. Find the minimum $f_0$ of the expression $$f=(a_1^2+a_2^2+\cdots+a_{2019}^2)-(a_1a_3+a_2a_4+\cdots+a_{2017}a_{2019}),$$ and determine the number of sequences $(a_1,a_2,\cdots,a_n)$ such that $f=f_0$.

2012 IMO Shortlist, A3

Let $n\ge 3$ be an integer, and let $a_2,a_3,\ldots ,a_n$ be positive real numbers such that $a_{2}a_{3}\cdots a_{n}=1$. Prove that \[(1 + a_2)^2 (1 + a_3)^3 \dotsm (1 + a_n)^n > n^n.\] [i]Proposed by Angelo Di Pasquale, Australia[/i]

2008 Mathcenter Contest, 3

Let ${a_1,a_2,\dots,a_n}$ be positive real numbers, ${n>1}$. Denote by $g_n$ their geometric mean, and by $A_1,A_2,\dots,A_n$ the sequence of arithmetic means defined by \[ A_k=\frac{a_1+a_2+\cdots+a_k}{k},\qquad k=1,2,\dots,n. \] Let $G_n$ be the geometric mean of $A_1,A_2,\dots,A_n$. Prove the inequality \[ n \root n\of{\frac{G_n}{A_n}}+ \frac{g_n}{G_n}\le n+1 \] and establish the cases of equality. [i]Proposed by Finbarr Holland, Ireland[/i]

1995 IMO Shortlist, 6

Let $ n$ be an integer,$ n \geq 3.$ Let $ x_1, x_2, \ldots, x_n$ be real numbers such that $ x_i < x_{i\plus{}1}$ for $ 1 \leq i \leq n \minus{} 1$. Prove that \[ \frac{n(n\minus{}1)}{2} \sum_{i < j} x_ix_j > \left(\sum^{n\minus{}1}_{i\equal{}1} (n\minus{}i)\cdot x_i \right) \cdot \left(\sum^{n}_{j\equal{}2} (j\minus{}1) \cdot x_j \right)\]

2017 Poland - Second Round, 3

Let $x_1 \le x_2 \le \ldots \le x_{2n-1}$ be real numbers whose arithmetic mean equals $A$. Prove that $$2\sum_{i=1}^{2n-1}\left( x_{i}-A\right)^2 \ge \sum_{i=1}^{2n-1}\left( x_{i}-x_{n}\right)^2.$$

2021 Canada National Olympiad, 2

Let $n\geq 2$ be some fixed positive integer and suppose that $a_1, a_2,\dots,a_n$ are positive real numbers satisfying $a_1+a_2+\cdots+a_n=2^n-1$. Find the minimum possible value of $$\frac{a_1}{1}+\frac{a_2}{1+a_1}+\frac{a_3}{1+a_1+a_2}+\cdots+\frac{a_n}{1+a_1+a_2+\cdots+a_{n-1}}$$

2016 Ukraine Team Selection Test, 6

Let $n$ be a fixed positive integer. Find the maximum possible value of \[ \sum_{1 \le r < s \le 2n} (s-r-n)x_rx_s, \] where $-1 \le x_i \le 1$ for all $i = 1, \cdots , 2n$.