This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2016 Philippine MO, 4

Tags: game , nim , combinatorics
Two players, \(A\) (first player) and \(B\), take alternate turns in playing a game using 2016 chips as follows: [i]the player whose turn it is, must remove \(s\) chips from the remaining pile of chips, where \(s \in \{ 2,4,5 \}\)[/i]. No one can skip a turn. The player who at some point is unable to make a move (cannot remove chips from the pile) loses the game. Who among the two players can force a win on this game?