This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 8

2021 Azerbaijan IMO TST, 3

Determine all functions $f$ defined on the set of all positive integers and taking non-negative integer values, satisfying the three conditions: [list] [*] $(i)$ $f(n) \neq 0$ for at least one $n$; [*] $(ii)$ $f(x y)=f(x)+f(y)$ for every positive integers $x$ and $y$; [*] $(iii)$ there are infinitely many positive integers $n$ such that $f(k)=f(n-k)$ for all $k<n$. [/list]

Russian TST 2021, P2

Determine all functions $f$ defined on the set of all positive integers and taking non-negative integer values, satisfying the three conditions: [list] [*] $(i)$ $f(n) \neq 0$ for at least one $n$; [*] $(ii)$ $f(x y)=f(x)+f(y)$ for every positive integers $x$ and $y$; [*] $(iii)$ there are infinitely many positive integers $n$ such that $f(k)=f(n-k)$ for all $k<n$. [/list]

2021 SAFEST Olympiad, 6

Determine all functions $f$ defined on the set of all positive integers and taking non-negative integer values, satisfying the three conditions: [list] [*] $(i)$ $f(n) \neq 0$ for at least one $n$; [*] $(ii)$ $f(x y)=f(x)+f(y)$ for every positive integers $x$ and $y$; [*] $(iii)$ there are infinitely many positive integers $n$ such that $f(k)=f(n-k)$ for all $k<n$. [/list]

2021 Brazil Team Selection Test, 4

Determine all functions $f$ defined on the set of all positive integers and taking non-negative integer values, satisfying the three conditions: [list] [*] $(i)$ $f(n) \neq 0$ for at least one $n$; [*] $(ii)$ $f(x y)=f(x)+f(y)$ for every positive integers $x$ and $y$; [*] $(iii)$ there are infinitely many positive integers $n$ such that $f(k)=f(n-k)$ for all $k<n$. [/list]

2021 Taiwan TST Round 3, 1

Determine all functions $f$ defined on the set of all positive integers and taking non-negative integer values, satisfying the three conditions: [list] [*] $(i)$ $f(n) \neq 0$ for at least one $n$; [*] $(ii)$ $f(x y)=f(x)+f(y)$ for every positive integers $x$ and $y$; [*] $(iii)$ there are infinitely many positive integers $n$ such that $f(k)=f(n-k)$ for all $k<n$. [/list]

2020 IMO Shortlist, N5

Determine all functions $f$ defined on the set of all positive integers and taking non-negative integer values, satisfying the three conditions: [list] [*] $(i)$ $f(n) \neq 0$ for at least one $n$; [*] $(ii)$ $f(x y)=f(x)+f(y)$ for every positive integers $x$ and $y$; [*] $(iii)$ there are infinitely many positive integers $n$ such that $f(k)=f(n-k)$ for all $k<n$. [/list]

2021 Thailand TST, 3

Determine all functions $f$ defined on the set of all positive integers and taking non-negative integer values, satisfying the three conditions: [list] [*] $(i)$ $f(n) \neq 0$ for at least one $n$; [*] $(ii)$ $f(x y)=f(x)+f(y)$ for every positive integers $x$ and $y$; [*] $(iii)$ there are infinitely many positive integers $n$ such that $f(k)=f(n-k)$ for all $k<n$. [/list]

2023 Costa Rica - Final Round, 3.1

Let $\mathbb Z^{\geq 0}$ be the set of all non-negative integers. Consider a function $f:\mathbb Z^{\geq 0} \to \mathbb Z^{\geq 0}$ such that $f(0)=1$ and $f(1)=1$, and that for any integer $n \geq 1$, we have \[f(n + 1)f(n - 1) = nf(n)f(n - 1) + (f(n))^2.\] Determine the value of $f(2023)/f(2022)$.