This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 5

2021 China Team Selection Test, 2

Given distinct positive integer $ a_1,a_2,…,a_{2020} $. For $ n \ge 2021 $, $a_n$ is the smallest number different from $a_1,a_2,…,a_{n-1}$ which doesn't divide $a_{n-2020}...a_{n-2}a_{n-1}$. Proof that every number large enough appears in the sequence.

2022 South East Mathematical Olympiad, 5

Positive sequences $\{a_n\},\{b_n\}$ satisfy:$a_1=b_1=1,b_n=a_nb_{n-1}-\frac{1}{4}(n\geq 2)$. Find the minimum value of $4\sqrt{b_1b_2\cdots b_m}+\sum_{k=1}^m\frac{1}{a_1a_2\cdots a_k}$,where $m$ is a given positive integer.

2011 Kurschak Competition, 1

Let $a_1, a_2,...$ be an infinite sequence of positive integers such that for any $k,\ell\in \mathbb{Z_+}$, $a_{k+\ell}$ is divisible by $\gcd(a_k,a_\ell)$. Prove that for any integers $1\leqslant k\leqslant n$, $a_na_{n-1}\dots a_{n-k+1}$ is divisible by $a_ka_{k-1}\dots a_1$.

1989 Czech And Slovak Olympiad IIIA, 6

Consider a finite sequence $a_1, a_2,...,a_n$ whose terms are natural numbers at most equal to $n$. Determine the maximum number of terms of such a sequence, if you know that every two of its neighboring terms are different and at the same time there is no quartet of terms in it such that $a_p = a_r \ne a_q = a_s$ for $p < q < r < s$.

2021 China Team Selection Test, 2

Given distinct positive integer $ a_1,a_2,…,a_{2020} $. For $ n \ge 2021 $, $a_n$ is the smallest number different from $a_1,a_2,…,a_{n-1}$ which doesn't divide $a_{n-2020}...a_{n-2}a_{n-1}$. Proof that every number large enough appears in the sequence.