This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

1991 Mexico National Olympiad, 5

The sum of squares of two consecutive integers can be a square, as in $3^2+4^2 =5^2$. Prove that the sum of squares of $m$ consecutive integers cannot be a square for $m = 3$ or $6$ and find an example of $11$ consecutive integers the sum of whose squares is a square.

2025 Kyiv City MO Round 1, Problem 1

How many three-digit numbers are there, which do not have a zero in their decimal representation and whose sum of digits is $7$?

2011 HMNT, 1

Find the number of positive integers $x$ less than $100$ for which $$3^x + 5^x + 7^x + 11^x + 13^x + 17^x + 19^x$$ is prime.

1958 Polish MO Finals, 1

Prove that the product of three consecutive natural numbers, the middle of which is the cube of a natural number, is divisible by $ 504 $ .

2010 Romanian Master of Mathematics, 6

Given a polynomial $f(x)$ with rational coefficients, of degree $d \ge 2$, we define the sequence of sets $f^0(\mathbb{Q}), f^1(\mathbb{Q}), \ldots$ as $f^0(\mathbb{Q})=\mathbb{Q}$, $f^{n+1}(\mathbb{Q})=f(f^{n}(\mathbb{Q}))$ for $n\ge 0$. (Given a set $S$, we write $f(S)$ for the set $\{f(x)\mid x\in S\})$. Let $f^{\omega}(\mathbb{Q})=\bigcap_{n=0}^{\infty} f^n(\mathbb{Q})$ be the set of numbers that are in all of the sets $f^n(\mathbb{Q})$, $n\geq 0$. Prove that $f^{\omega}(\mathbb{Q})$ is a finite set. [i]Dan Schwarz, Romania[/i]

2013 Vietnam Team Selection Test, 2

a. Prove that there are infinitely many positive integers $t$ such that both $2012t+1$ and $2013t+1$ are perfect squares. b. Suppose that $m,n$ are positive integers such that both $mn+1$ and $mn+n+1$ are perfect squares. Prove that $8(2m+1)$ divides $n$.

2024 Thailand TST, 1

Determine all polynomials $P$ with integer coefficients for which there exists an integer $a_n$ such that $P(a_n)=n^n$ for all positive integers $n$.

2011 IMO Shortlist, 5

Let $f$ be a function from the set of integers to the set of positive integers. Suppose that, for any two integers $m$ and $n$, the difference $f(m) - f(n)$ is divisible by $f(m- n)$. Prove that, for all integers $m$ and $n$ with $f(m) \leq f(n)$, the number $f(n)$ is divisible by $f(m)$. [i]Proposed by Mahyar Sefidgaran, Iran[/i]

2014 Contests, 2

Do there exist positive integers $a$ and $b$ such that $a^n+n^b$ and $b^n+n^a$ are relatively prime for all natural $n$?

1998 Iran MO (3rd Round), 1

Find all functions $f: \mathbb N \to \mathbb N$ such that for all positive integers $m,n$, [b](i)[/b] $mf(f(m))=\left( f(m) \right)^2$, [b](ii)[/b] If $\gcd(m,n)=d$, then $f(mn) \cdot f(d)=d \cdot f(m) \cdot f(n)$, [b](iii)[/b] $f(m)=m$ if and only if $m=1$.

2009 District Olympiad, 1

Let $m$ and $n$ be positive integers such that $5$ divides $2^n + 3^m$. Prove that $5$ divides $2^m + 3^n$.

2005 Spain Mathematical Olympiad, 1

Let $a$ and $b$ be integers. Demonstrate that the equation $$(x-a)(x-b)(x-3) +1 = 0$$ has an integer solution.

2017 Puerto Rico Team Selection Test, 5

Tags: prime , odd , number theory
Find a pair prime numbers $(p, q)$, $p> q$ of , if any, such that $\frac{p^2 - q^2}{4}$ is an odd integer.

2006 Grigore Moisil Urziceni, 3

Let be a sequence $ \left( b_n \right)_{n\ge 1} $ of integers, having the following properties: $ \text{(i)} $ the sequence $ \left( \frac{b_n}{n} \right)_{n\ge 1} $ is convergent. $ \text{(ii)} m-n|b_m-b_n, $ for any natural numbers $ m>n. $ Prove that there exists an index from which the sequence $ \left( b_n \right)_{n\ge 1} $ is an arithmetic one. [i]Cristinel Mortici[/i]

2015 IMC, 4

Determine whether or not there exist 15 integers $m_1,\ldots,m_{15}$ such that~ $$\displaystyle \sum_{k=1}^{15}\,m_k\cdot\arctan(k) = \arctan(16). \eqno(1)$$ (Proposed by Gerhard Woeginger, Eindhoven University of Technology)

2010 Purple Comet Problems, 18

When $4 \cos \theta - 3 \sin \theta = \tfrac{13}{3},$ it follows that $7 \cos 2\theta - 24 \sin 2\theta = \tfrac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n.$

2013 Switzerland - Final Round, 5

Each of $2n + 1$ students chooses a finite, nonempty set of consecutive integers . Two students are friends if they have chosen a common number. Everyone student is friends with at least $n$ other students. Show that there is a student who is friends with everyone else.

1984 Spain Mathematical Olympiad, 7

Consider the natural numbers written in the decimal system. (a) Find the smallest number which decreases five times when its first digit is erased. Which form do all numbers with this property have? (b) Prove that there is no number that decreases $12$ times when its first digit is erased. (c) Find the necessary and sufficient condition on $k$ for the existence of a natural number which is divided by $k$ when its first digit is erased.

2011 Germany Team Selection Test, 2

Let $n$ be a positive integer prove that $$6\nmid \lfloor (\sqrt[3]{28}-3)^{-n} \rfloor.$$

2008 BAMO, 1

Call a year [i]ultra-even[/i] if all of its digits are even. Thus $2000,2002,2004,2006$, and $2008$ are all [i]ultra-even[/i] years. They are all $2$ years apart, which is the shortest possible gap. $2009$ is not an [i]ultra-even[/i] year because of the $9$, and $2010$ is not an ultra-even year because of the $1$. (a) In the years between the years $1$ and $10000$, what is the longest possible gap between two [i]ultra-even[/i] years? Give an example of two ultra-even years that far apart with no [i]ultra-even[/i] years between them. Justify your answer. (b) What is the second-shortest possible gap (that is, the shortest gap longer than $2$ years) between two [i]ultra-even[/i] years? Again, give an example, and justify your answer.

2023 All-Russian Olympiad Regional Round, 11.4

We write pairs of integers on a blackboard. Initially, the pair $(1,2)$ is written. On a move, if $(a, b)$ is on the blackboard, we can add $(-a, -b)$ or $(-b, a+b)$. In addition, if $(a, b)$ and $(c, d)$ are written on the blackboard, we can add $(a+c, b+d)$. Can we reach $(2022, 2023)$?

2021 Iberoamerican, 1

Let $P = \{p_1,p_2,\ldots, p_{10}\}$ be a set of $10$ different prime numbers and let $A$ be the set of all the integers greater than $1$ so that their prime decomposition only contains primes of $P$. The elements of $A$ are colored in such a way that: [list] [*] each element of $P$ has a different color, [*] if $m,n \in A$, then $mn$ is the same color of $m$ or $n$, [*] for any pair of different colors $\mathcal{R}$ and $\mathcal{S}$, there are no $j,k,m,n\in A$ (not necessarily distinct from one another), with $j,k$ colored $\mathcal{R}$ and $m,n$ colored $\mathcal{S}$, so that $j$ is a divisor of $m$ and $n$ is a divisor of $k$, simultaneously. [/list] Prove that there exists a prime of $P$ so that all its multiples in $A$ are the same color.

2015 Iran Team Selection Test, 3

Let $ b_1<b_2<b_3<\dots $ be the sequence of all natural numbers which are sum of squares of two natural numbers. Prove that there exists infinite natural numbers like $m$ which $b_{m+1}-b_m=2015$ .

2002 France Team Selection Test, 2

Consider the set $S$ of integers $k$ which are products of four distinct primes. Such an integer $k=p_1p_2p_3p_4$ has $16$ positive divisors $1=d_1<d_2<\ldots <d_{15}<d_{16}=k$. Find all elements of $S$ less than $2002$ such that $d_9-d_8=22$.

2021 Saint Petersburg Mathematical Olympiad, 7

For a positive integer $n$, prove that $$\sum_{n \le p \le n^4} \frac{1}{p} < 4$$ where the sum is taken across primes $p$ in the range $[n, n^4]$ [i]N. Filonov[/i]