Found problems: 15460
2006 Paraguay Mathematical Olympiad, 4
Consider all pairs of positive integers $(a,b)$, with $a<b$, such that
$\sqrt{a} +\sqrt{b} = \sqrt{2,160}$
Determine all possible values of $a$.
2021 Science ON all problems, 1
Are there any integers $a,b$ and $c$, not all of them $0$, such that
$$a^2=2021b^2+2022c^2~~?$$
[i] (Cosmin Gavrilă)[/i]
MMPC Part II 1958 - 95, 1963
[b]p1.[/b] Suppose $x \ne 1$ or $10$ and logarithms are computed to the base $10$. Define $y= 10^{\frac{1}{1-\log x}}$ and $z = ^{\frac{1}{1-\log y}}$ . Prove that $x= 10^{\frac{1}{1-\log z}}$
[b]p2.[/b] If $n$ is an odd number and $x_1, x_2, x_3,..., x_n$ is an arbitrary arrangement of the integers $1, 2,3,..., n$, prove that the product $$(x_1 -1)(x_2-2)(x_3- 3)... (x_n-n)$$ is an even number (possibly negative or zero).
[b]p3.[/b] Prove that $\frac{1 \cdot 3 \cdot 5 \cdot \cdot \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \cdot \cdot(2n} < \sqrt{\frac{1}{2n + 1}}$ for all integers $n = 1,2,3,...$
[b]p4.[/b] Prove that if three angles of a convex polygon are each $60^o$, then the polygon must be an equilateral triangle.
[b]p5.[/b] Find all solutions, real and complex, of $$4 \left(x^2+\frac{1}{x^2} \right)-4 \left( x+\frac{1}{x} \right)-7=0$$
[b]p6.[/b] A man is $\frac38$ of the way across a narrow railroad bridge when he hears a train approaching at $60$ miles per hour. No matter which way he runs he can [u]just [/u] escape being hit by the train. How fast can he run? Prove your assertion.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2014 Contests, 3
Find all nonnegative integer numbers such that $7^x- 2 \cdot 5^y = -1$
2007 Iran MO (3rd Round), 4
Find all integer solutions of \[ x^{4}\plus{}y^{2}\equal{}z^{4}\]
2019 Turkey Team SeIection Test, 8
Let $p>2$ be a prime number, $m>1$ and $n$ be positive integers such that $\frac {m^{pn}-1}{m^n-1}$ is a prime number. Show that: $$pn\mid (p-1)^n+1$$
2024 Kyiv City MO Round 2, Problem 4
In a certain magical country, there are banknotes in denominations of $2^0, 2^1, 2^2, \ldots$ UAH. Businessman Victor has to make cash payments to $44$ different companies totaling $44000$ UAH, but he does not remember how much he has to pay to each company. What is the smallest number of banknotes Victor should withdraw from an ATM (totaling exactly $44000$ UAH) to guarantee that he would be able to pay all the companies without leaving any change?
[i]Proposed by Oleksii Masalitin[/i]
DMM Devil Rounds, 2009
[b]p1.[/b] Find all positive integers $n$ such that $n^3 - 14n^2 + 64n - 93$ is prime.
[b]p2.[/b] Let $a, b, c$ be real numbers such that $0 \le a, b, c \le 1$. Find the maximum value of
$$\frac{a}{1 + bc}+\frac{b}{1 + ac}+\frac{c}{1 + ab}$$
[b]p3.[/b] Find the maximum value of the function $f(x, y, z) = 4x + 3y + 2z$ on the ellipsoid $16x^2 + 9y^2 + 4z^2 = 1$
[b]p4.[/b] Let $x_1,..., x_n$ be numbers such that $x_1+...+x_n = 2009$. Find the minimum value of $x^2_1+...+x^2_n$ (in term of $n$).
[b]p5.[/b] Find the number of odd integers between $1000$ and $9999$ that have at least 3 distinct digits.
[b]p6.[/b] Let $A_1,A_2,...,A_{2^n-1}$ be all the possible nonempty subsets of $\{1, 2, 3,..., n\}$. Find the maximum value of $a_1 + a_2 + ... + a_{2^n-1}$ where $a_i \in A_i$ for each $i = 1, 2,..., 2^n - 1$.
[b]p7.[/b] Find the rightmost digit when $41^{2009}$ is written in base $7$.
[b]p8.[/b] How many integral ordered triples $(x, y, z)$ satisfy the equation $x+y+z = 2009$, where $10 \le x < 31$, $100 < z < 310$ and $y \ge 0$.
[b]p9.[/b] Scooby has a fair six-sided die, labeled $1$ to $6$, and Shaggy has a fair twenty-sided die, labeled $1$ to $20$. During each turn, they both roll their own dice at the same time. They keep rolling the die until one of them rolls a 5. Find the probability that Scooby rolls a $5$ before Shaggy does.
[b]p10.[/b] Let $N = 1A323492110877$ where $A$ is a digit in the decimal expansion of $N$. Suppose $N$ is divisible by $7$. Find $A$.
[b]p11.[/b] Find all solutions $(x, y)$ of the equation $\tan^4(x+y)+\cot^4(x+y) = 1-2x-x^2$, where $-\frac{\pi}{2}
\le x; y \le \frac{\pi}{2}$
[b]p12.[/b] Find the remainder when $\sum^{50}_{k=1}k!(k^2 + k - 1)$ is divided by $1008$.
[b]p13.[/b] The devil set of a positive integer $n$, denoted $D(n)$, is defined as follows:
(1) For every positive integer $n$, $n \in D(n)$.
(2) If $n$ is divisible by $m$ and $m < n$, then for every element $a \in D(m)$, $a^3$ must be in $D(n)$.
Furthermore, call a set $S$ scary if for any $a, b \in S$, $a < b$ implies that $b$ is divisible by $a$. What is the least positive integer $n$ such that $D(n)$ is scary and has at least $2009$ elements?
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2011 Gheorghe Vranceanu, 1
If $ \sqrt{x^2+2y+1} +\sqrt[3]{y^3+3x^2+3x+1} $ is rational, then $ x=y. $
2010 Estonia Team Selection Test, 1
For arbitrary positive integers $a, b$, denote $a @ b =\frac{a-b}{gcd(a,b)}$
Let $n$ be a positive integer. Prove that the following conditions are equivalent:
(i) $gcd(n, n @ m) = 1$ for every positive integer $m < n$,
(ii) $n = p^k$ where $p$ is a prime number and $k$ is a non-negative integer.
2013 Balkan MO Shortlist, N8
Suppose that $a$ and $b$ are integers. Prove that there are integers $c$ and $d$ such that $a+b+c+d=0$ and $ac+bd=0$, if and only if $a-b$ divides $2ab$.
1997 Bosnia and Herzegovina Team Selection Test, 5
$a)$ Prove that for all positive integers $n$ exists a set $M_n$ of positive integers with exactly $n$ elements and:
$i)$ Arithmetic mean of arbitrary non-empty subset of $M_n$ is integer
$ii)$ Geometric mean of arbitrary non-empty subset of $M_n$ is integer
$iii)$ Both arithmetic mean and geometry mean of arbitrary non-empty subset of $M_n$ is integer
$b)$ Does there exist infinite set $M$ of positive integers such that arithmetic mean of arbitrary non-empty subset of $M$ is integer
2015 239 Open Mathematical Olympiad, 2
Prove that $\binom{n+k}{n}$ can be written as product of $n$ pairwise coprime numbers $a_1,a_2,\dots,a_n$ such that $k+i$ is divisible by $a_i$ for all indices $i$.
2012 India PRMO, 11
Let $P(n) = (n + 1)(n + 3)(n + 5)(n + 7)(n + 9)$. What is the largest integer that is a divisor of $P(n)$ for all positive even integers $n$?
2017 Nordic, 1
Let $n$ be a positive integer. Show that there exist positive integers $a$ and $b$ such that \[ \frac{a^2 + a + 1}{b^2 + b + 1} = n^2 + n + 1. \]
2020 Turkey EGMO TST, 2
$p(m)$ is the number of distinct prime divisors of a positive integer $m>1$ and $f(m)$ is the $\bigg \lfloor \frac{p(m)+1}{2}\bigg \rfloor$ th smallest prime divisor of $m$. Find all positive integers $n$ satisfying the equation: $$f(n^2+2) + f(n^2+5) = 2n-4$$
2019 ELMO Problems, 1
Let $P(x)$ be a polynomial with integer coefficients such that $P(0)=1$, and let $c > 1$ be an integer. Define $x_0=0$ and $x_{i+1} = P(x_i)$ for all integers $i \ge 0$. Show that there are infinitely many positive integers $n$ such that $\gcd (x_n, n+c)=1$.
[i]Proposed by Milan Haiman and Carl Schildkraut[/i]
2008 JBMO Shortlist, 5
Is it possible to arrange the numbers $1^1, 2^2,..., 2008^{2008}$ one after the other, in such a way that the obtained number is a perfect square? (Explain your answer.)
2002 Baltic Way, 5
Find all pairs $(a,b)$ of positive rational numbers such that
\[\sqrt{a}+\sqrt{b}=\sqrt{2+\sqrt{3}}. \]
1985 Polish MO Finals, 1
Find the largest $k$ such that for every positive integer $n$ we can find at least $k$ numbers in the set $\{n+1, n+2, ... , n+16\}$ which are coprime with $n(n+17)$.
2009 Stars Of Mathematics, 4
Determine all non-constant polynomials $ f\in \mathbb{Z}[X]$ with the property that there exists $ k\in\mathbb{N}^*$ such that for any prime number $ p$, $ f(p)$ has at most $ k$ distinct prime divisors.
2001 Romania Team Selection Test, 2
a) Let $f,g:\mathbb{Z}\rightarrow\mathbb{Z}$ be one to one maps. Show that the function $h:\mathbb{Z}\rightarrow\mathbb{Z}$ defined by $h(x)=f(x)g(x)$, for all $x\in\mathbb{Z}$, cannot be a surjective function.
b) Let $f:\mathbb{Z}\rightarrow\mathbb{Z}$ be a surjective function. Show that there exist surjective functions $g,h:\mathbb{Z}\rightarrow\mathbb{Z}$ such that $f(x)=g(x)h(x)$, for all $x\in\mathbb{Z}$.
1963 Leningrad Math Olympiad, grade 8
[b]8.1[/b] On the median drawn from the vertex of the triangle to the base, point $A$ is taken. The sum of the distances from $A$ to the sides of the triangle is equal to $s$. Find the distances from $A$ to the sides if the lengths of the sides are equal to $x$ and $y$.
[b]8.2[/b] Fraction $0, abc...$ is composed according to the following rule: $a$ and $c$ are arbitrary digits, and each next digit is equal to the remainder of the sum of the previous two digits when divided by $10$. Prove that this fraction is purely periodic.
[b]8.3[/b] Two convex polygons with $m$ and $n$ sides are drawn on the plane ($m>n$). What is the greatest possible number of parts, they can break the plane?
[b]8.4 [/b]The sum of three integers that are perfect squares is divisible by $9$. Prove that among them, there are two numbers whose difference is divisible by $9$.
[b]8.5 / 9.5[/b] Given $k+2$ integers. Prove that among them there are two integers such that either their sum or their difference is divisible by $2k$.
[b]8.6[/b] A right angle rotates around its vertex. Find the locus of the midpoints of the segments connecting the intersection points sides of an angle and a given circle.
PS. You should use hide for answers.Collected [url=https://artofproblemsolving.com/community/c3983460_1963_leningrad_math_olympiad]here[/url].
2021 Princeton University Math Competition, 13
Given a positive integer $n$ with prime factorization $p_1^{e_1}p_2^{e_2}... p_k^{e_k}$ , we define $f(n)$ to be $\sum^k_{i=1}p_ie_i$. In other words, $f(n)$ is the sum of the prime divisors of $n$, counted with multiplicities. Let $M$ be the largest odd integer such that $f(M) = 2023$, and $m$ the smallest odd integer so that $f(m) = 2023$. Suppose that $\frac{M}{m}$ equals $p_1^{e_1}p_2^{e_2}... p_l^{e_l}$ , where the $e_i$ are all nonzero integers and the $p_i$ are primes. Find $\left| \sum^l_{i=1} (p_i + e_i) \right|$.
1975 IMO Shortlist, 11
Let $a_{1}, \ldots, a_{n}$ be an infinite sequence of strictly positive integers, so that $a_{k} < a_{k+1}$ for any $k.$ Prove that there exists an infinity of terms $ a_{m},$ which can be written like $a_m = x \cdot a_p + y \cdot a_q$ with $x,y$ strictly positive integers and $p \neq q.$