This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

1989 Austrian-Polish Competition, 6

A sequence $(a_n)_{n \in N}$ of squares of nonzero integers is such that for each $n$ the difference $a_{n+1} - a_n$ is a prime or the square of a prime. Show that all such sequences are finite and determine the longest sequence.

MOAA Gunga Bowls, 2018

[u]Set 1[/u] [b]p1.[/b] Find $1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11$. [b]p2.[/b] Find $1 \cdot 11 + 2 \cdot 10 + 3 \cdot 9 + 4 \cdot 8 + 5 \cdot 7 + 6 \cdot 6$. [b]p3.[/b] Let $\frac{1}{1\cdot 2} +\frac{1}{2\cdot 3} +\frac{1}{3\cdot 4} +\frac{1}{4\cdot 5} +\frac{1}{5\cdot 6} +\frac{1}{6\cdot 7} +\frac{1}{7\cdot 8} +\frac{1}{8\cdot 9} +\frac{1}{9\cdot 10} +\frac{1}{10\cdot 11} =\frac{m}{n}$ , where $m$ and $n$ are positive integers that share no prime divisors. Find $m + n$. [u]Set 2[/u] [b]p4.[/b] Define $0! = 1$ and let $n! = n \cdot (n - 1)!$ for all positive integers $n$. Find the value of $(2! + 0!)(1! + 8!)$. [b]p5.[/b] Rachel’s favorite number is a positive integer $n$. She gives Justin three clues about it: $\bullet$ $n$ is prime. $\bullet$ $n^2 - 5n + 6 \ne 0$. $\bullet$ $n$ is a divisor of $252$. What is Rachel’s favorite number? [b]p6.[/b] Shen eats eleven blueberries on Monday. Each day after that, he eats five more blueberries than the day before. For example, Shen eats sixteen blueberries on Tuesday. How many blueberries has Shen eaten in total before he eats on the subsequent Monday? [u]Set 3[/u] [b]p7.[/b] Triangle $ABC$ satisfies $AB = 7$, $BC = 12$, and $CA = 13$. If the area of $ABC$ can be expressed in the form $m\sqrt{n}$, where $n$ is not divisible by the square of a prime, then determine $m + n$. [b]p8.[/b] Sebastian is playing the game Split! on a coordinate plane. He begins the game with one token at $(0, 0)$. For each move, he is allowed to select a token on any point $(x, y)$ and take it off the plane, replacing it with two tokens, one at $(x + 1, y)$, and one at $(x, y + 1)$. At the end of the game, for a token on $(a, b)$, it is assigned a score $\frac{1}{2^{a+b}}$ . These scores are summed for his total score. Determine the highest total score Sebastian can get in $100$ moves. [b]p9.[/b] Find the number of positive integers $n$ satisfying the following two properties: $\bullet$ $n$ has either four or five digits, where leading zeros are not permitted, $\bullet$ The sum of the digits of $n$ is a multiple of $3$. [u]Set 4[/u] [b]p10.[/b] [i]A unit square rotated $45^o$ about a vertex, Sweeps the area for Farmer Khiem’s pen. If $n$ is the space the pigs can roam, Determine the floor of $100n$.[/i] If $n$ is the area a unit square sweeps out when rotated 4$5$ degrees about a vertex, determine $\lfloor 100n \rfloor$. Here $\lfloor x \rfloor$ denotes the greatest integer less than or equal to $x$. [img]https://cdn.artofproblemsolving.com/attachments/b/1/129efd0dbd56dc0b4fb742ac80eaf2447e106d.png[/img] [b]p11.[/b][i] Michael is planting four trees, In a grid, three rows of three, If two trees are close, Then both are bulldozed, So how many ways can it be?[/i] In a three by three grid of squares, determine the number of ways to select four squares such that no two share a side. [b]p12.[/b] [i]Three sixty-seven Are the last three digits of $n$ cubed. What is $n$?[/i] If the last three digits of $n^3$ are $367$ for a positive integer $n$ less than $1000$, determine $n$. [u]Set 5[/u] [b]p13.[/b] Determine $\sqrt[4]{97 + 56\sqrt{3}} + \sqrt[4]{97 - 56\sqrt{3}}$. [b]p14. [/b]Triangle $\vartriangle ABC$ is inscribed in a circle $\omega$ of radius $12$ so that $\angle B = 68^o$ and $\angle C = 64^o$ . The perpendicular from $A$ to $BC$ intersects $\omega$ at $D$, and the angle bisector of $\angle B$ intersects $\omega$ at $E$. What is the value of $DE^2$? [b]p15.[/b] Determine the sum of all positive integers $n$ such that $4n^4 + 1$ is prime. [u]Set 6[/u] [b]p16.[/b] Suppose that $p, q, r$ are primes such that $pqr = 11(p + q + r)$ such that $p\ge q \ge r$. Determine the sum of all possible values of $p$. [b]p17.[/b] Let the operation $\oplus$ satisfy $a \oplus b =\frac{1}{1/a+1/b}$ . Suppose $$N = (...((2 \oplus 2) \oplus 2) \oplus ... 2),$$ where there are $2018$ instances of $\oplus$ . If $N$ can be expressed in the form $m/n$, where $m$ and $n$ are relatively prime positive integers, then determine $m + n$. [b]p18.[/b] What is the remainder when $\frac{2018^{1001} - 1}{2017}$ is divided by $2017$? PS. You had better use hide for answers. Last sets have been posted [url=https://artofproblemsolving.com/community/c4h2777307p24369763]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2012 Princeton University Math Competition, A5

Call a positive integer $x$ a leader if there exists a positive integer $n$ such that the decimal representation of $x^n$ starts ([u]not ends[/u]) with $2012$. For example, $586$ is a leader since $586^3 =201230056$. How many leaders are there in the set $\{1, 2, 3, ..., 2012\}$?

2006 Tournament of Towns, 5

Prove that one can find infinite number of distinct pairs of integers such that every digit of each number is no less than $7$ and the product of two numbers in each pair is also a number with all its digits being no less than $7$. (6)

2024/2025 TOURNAMENT OF TOWNS, P1

On the blackboard, there are numbers $1, 2, \dots , 100$. At each move, Bob erases arbitrary two numbers $a$ and $b$, where $a \ge b > 0$, and writes the single number $\lfloor{a/b}\rfloor$. After $99$ such moves the blackboard will contain a single number. What is its maximum possible value? (Reminder that $\lfloor{x}\rfloor$ is the maximum integer not exceeding $x$.)

2021 Baltic Way, 16

Show that no non-zero integers $a$, $b$, $x$, $y$ satisfy $$ \begin{cases} a x - b y = 16,\\ a y + b x = 1. \end{cases} $$

2025 Junior Balkan Team Selection Tests - Romania, P4

Find all positive integers $n$ such that $2^n-n^2+1$ is a perfect square.

2012 Finnish National High School Mathematics Competition, 3

Prove that for all integers $k\geq 2,$ the number $k^{k-1}-1$ is divisible by $(k-1)^2.$

2024 IFYM, Sozopol, 3

The sequence \( (a_n)_{n\geq 1} \) of positive integers is such that \( a_1 = 1 \) and \( a_{m+n} \) divides \( a_m + a_n \) for any positive integers \( m \) and \( n \). a) Prove that if the sequence is unbounded, then \( a_n = n \) for all \( n \). b) Does there exist a non-constant bounded sequence with the above properties? (A sequence \( (a_n)_{n\geq 1} \) of positive integers is bounded if there exists a positive integer \( A \) such that \( a_n \leq A \) for all \( n \), and unbounded otherwise.)

2009 Jozsef Wildt International Math Competition, W. 5

Let $p_1$, $p_2$ be two odd prime numbers and $\alpha $, $n$ be positive integers with $\alpha >1$, $n>1$. Prove that if the equation $\left (\frac{p_2 -1}{2} \right )^{p_1} + \left (\frac{p_2 +1}{2} \right )^{p_1} = \alpha^n$ does not have integer solutions for both $p_1 =p_2$ and $p_1 \neq p_2$.

2017 All-Russian Olympiad, 3

There are $n$ positive real numbers on the board $a_1,\ldots, a_n$. Someone wants to write $n$ real numbers $b_1,\ldots,b_n$,such that: $b_i\geq a_i$ If $b_i \geq b_j$ then $\frac{b_i}{b_j}$ is integer. Prove that it is possible to write such numbers with the condition $$b_1 \cdots b_n \leq 2^{\frac{n-1}{2}}a_1\cdots a_n.$$

2014 Iran MO (3rd Round), 5

Can an infinite set of natural numbers be found, such that for all triplets $(a,b,c)$ of it we have $abc + 1 $ perfect square? (20 points )

2018 Thailand Mathematical Olympiad, 6

Let $A$ be the set of all triples $(x, y, z)$ of positive integers satisfying $2x^2 + 3y^3 = 4z^4$ . a) Show that if $(x, y, z) \in A$ then $6$ divides all of $x, y, z$. b) Show that $A$ is an infinite set.

1967 All Soviet Union Mathematical Olympiad, 093

Given natural number $k$ with a property "if $n$ is divisible by $k$, than the number, obtained from $n$ by reversing the order of its digits is also divisible by $k$". Prove that the $k$ is a divisor of $99$.

2006 Junior Balkan Team Selection Tests - Romania, 4

For a positive integer $n$ denote $r(n)$ the number having the digits of $n$ in reverse order- for example, $r(2006) = 6002$. Prove that for any positive integers a and b the numbers $4a^2 + r(b)$ and $4b^2 + r(a)$ can not be simultaneously squares.

2021 Mexico National Olympiad, 6

Determine all non empty sets $C_1, C_2, C_3, \cdots $ such that each one of them has a finite number of elements, all their elements are positive integers, and they satisfy the following property: For any positive integers $n$ and $m$, the number of elements in the set $C_n$ plus the number of elements in the set $C_m$ equals the sum of the elements in the set $C_{m + n}$. [i]Note:[/i] We denote $\lvert C_n \lvert$ the number of elements in the set $C_n$, and $S_k$ as the sum of the elements in the set $C_n$ so the problem's condition is that for every $n$ and $m$: \[\lvert C_n \lvert + \lvert C_m \lvert = S_{n + m}\] is satisfied.

2019 Serbia National MO, 1

Find all positive integers $n, n>1$ for wich holds : If $a_1, a_2 ,\dots ,a_k$ are all numbers less than $n$ and relatively prime to $n$ , and holds $a_1<a_2<\dots <a_k $, then none of sums $a_i+a_{i+1}$ for $i=1,2,3,\dots k-1 $ are divisible by $3$.

2023 CUBRMC, Individual

[b]p1.[/b] Find the largest $4$ digit integer that is divisible by $2$ and $5$, but not $3$. [b]p2.[/b] The diagram below shows the eight vertices of a regular octagon of side length $2$. These vertices are connected to form a path consisting of four crossing line segments and four arcs of degree measure $270^o$. Compute the area of the shaded region. [center][img]https://cdn.artofproblemsolving.com/attachments/0/0/eec34d8d2439b48bb5cca583462c289287f7d0.png[/img][/center] [b]p3.[/b] Consider the numbers formed by writing full copies of $2023$ next to each other, like so: $$2023202320232023...$$ How many copies of $2023$ are next to each other in the smallest multiple of $11$ that can be written in this way? [b]p4.[/b] A positive integer $n$ with base-$10$ representation $n = a_1a_2 ...a_k$ is called [i]powerful [/i] if the digits $a_i$ are nonzero for all $1 \le i \le k$ and $$n = a^{a_1}_1 + a^{a_2}_2 +...+ a^{a_k}_k .$$ What is the unique four-digit positive integer that is [i]powerful[/i]? [b]p5.[/b] Six $(6)$ chess players, whose names are Alice, Bob, Crystal, Daniel, Esmeralda, and Felix, are sitting in a circle to discuss future content pieces for a show. However, due to fights they’ve had, Bob can’t sit beside Alice or Crystal, and Esmeralda can’t sit beside Felix. Determine the amount of arrangements the chess players can sit in. Two arrangements are the same if they only differ by a rotation. [b]p6.[/b] Given that the infinite sum $\frac{1}{1^4} +\frac{1}{2^4} +\frac{1}{3^4} +...$ is equal to $\frac{\pi^4}{90}$, compute the value of $$\dfrac{\dfrac{1}{1^4} +\dfrac{1}{2^4} +\dfrac{1}{3^4} +...}{\dfrac{1}{1^4} +\dfrac{1}{3^4} +\dfrac{1}{5^4} +...}$$ [b]p7.[/b] Triangle $ABC$ is equilateral. There are $3$ distinct points, $X$, $Y$ , $Z$ inside $\vartriangle ABC$ that each satisfy the property that the distances from the point to the three sides of the triangle are in ratio $1 : 1 : 2$ in some order. Find the ratio of the area of $\vartriangle ABC$ to that of $\vartriangle XY Z$. [b]p8.[/b] For a fixed prime $p$, a finite non-empty set $S = \{s_1,..., s_k\}$ of integers is $p$-[i]admissible [/i] if there exists an integer $n$ for which the product $$(s_1 + n)(s_2 + n) ... (s_k + n)$$ is not divisible by $p$. For example, $\{4, 6, 8\}$ is $2$-[i]admissible[/i] since $(4+1)(6+1)(8+1) = 315$ is not divisible by $2$. Find the size of the largest subset of $\{1, 2,... , 360\}$ that is two-,three-, and five-[i]admissible[/i]. [b]p9.[/b] Kwu keeps score while repeatedly rolling a fair $6$-sided die. On his first roll he records the number on the top of the die. For each roll, if the number was prime, the following roll is tripled and added to the score, and if the number was composite, the following roll is doubled and added to the score. Once Kwu rolls a $1$, he stops rolling. For example, if the first roll is $1$, he gets a score of $1$, and if he rolls the sequence $(3, 4, 1)$, he gets a score of $3 + 3 \cdot 4 + 2 \cdot 1 = 17$. What is his expected score? [b]p10.[/b] Let $\{a_1, a_2, a_3, ...\}$ be a geometric sequence with $a_1 = 4$ and $a_{2023} = \frac14$ . Let $f(x) = \frac{1}{7(1+x^2)}$. Find $$f(a_1) + f(a_2) + ... + f(a_{2023}).$$ [b]p11.[/b] Let $S$ be the set of quadratics $x^2 + ax + b$, with $a$ and $b$ real, that are factors of $x^{14} - 1$. Let $f(x)$ be the sum of the quadratics in $S$. Find $f(11)$. [b]p12.[/b] Find the largest integer $0 < n < 100$ such that $n^2 + 2n$ divides $4(n- 1)! + n + 4$. [b]p13.[/b] Let $\omega$ be a unit circle with center $O$ and radius $OQ$. Suppose $P$ is a point on the radius $OQ$ distinct from $Q$ such that there exists a unique chord of $\omega$ through $P$ whose midpoint when rotated $120^o$ counterclockwise about $Q$ lies on $\omega$. Find $OP$. [b]p14.[/b] A sequence of real numbers $\{a_i\}$ satisfies $$n \cdot a_1 + (n - 1) \cdot a_2 + (n - 2) \cdot a_3 + ... + 2 \cdot a_{n-1} + 1 \cdot a_n = 2023^n$$ for each integer $n \ge 1$. Find the value of $a_{2023}$. [b]p15.[/b] In $\vartriangle ABC$, let $\angle ABC = 90^o$ and let $I$ be its incenter. Let line $BI$ intersect $AC$ at point $D$, and let line $CI$ intersect $AB$ at point $E$. If $ID = IE = 1$, find $BI$. [b]p16.[/b] For a positive integer $n$, let $S_n$ be the set of permutations of the first $n$ positive integers. If $p = (a_1, ..., a_n) \in S_n$, then define the bijective function $\sigma_p : \{1,..., n\} \to \{1, ..., n\}$ such that $\sigma_p (i) = a_i$ for all integers $1 \le i \le n$. For any two permutations $p, q \in S_n$, we say $p$ and $q$ are friends if there exists a third permutation $r \in S_n$ such that for all integers $1 \le i \le n$, $$\sigma_p(\sigma_r (i)) = \sigma_r(\sigma_q(i)).$$ Find the number of friends, including itself, that the permutation $(4, 5, 6, 7, 8, 9, 10, 2, 3, 1)$ has in $S_{10}$. PS. You had better use hide for answers.

2010 Contests, 3

Positive integer numbers $k$ and $n$ satisfy the inequality $k > n!$. Prove that there exist pairwisely different prime numbers $p_1, p_2, \ldots, p_n$ which are divisors of the numbers $k+1, k+2, \ldots, k+n$ respectively (i.e. $p_i|k+i$).

2019 USAJMO, 6

Two rational numbers \(\tfrac{m}{n}\) and \(\tfrac{n}{m}\) are written on a blackboard, where \(m\) and \(n\) are relatively prime positive integers. At any point, Evan may pick two of the numbers \(x\) and \(y\) written on the board and write either their arithmetic mean \(\tfrac{x+y}{2}\) or their harmonic mean \(\tfrac{2xy}{x+y}\) on the board as well. Find all pairs \((m,n)\) such that Evan can write 1 on the board in finitely many steps. [i]Proposed by Yannick Yao[/i]

2018 Latvia Baltic Way TST, P13

Determine whether there exists a prime $q$ so that for any prime $p$ the number $$\sqrt[3]{p^2+q}$$ is never an integer.

1994 Spain Mathematical Olympiad, 1

Prove that if an arithmetic progression contains a perfect square, then it contains infinitely many perfect squares.

1999 All-Russian Olympiad, 1

Do there exist $19$ distinct natural numbers with equal sums of digits, whose sum equals $1999$?

2017 HMNT, 1

Find the sum of all positive integers whose largest proper divisor is $55$. (A proper divisor of $n$ is a divisor that is strictly less than $n$.)

2022 239 Open Mathematical Olympiad, 5

Prove that there are infinitely many positive integers $k$ such that $k(k+1)(k+2)(k+3)$ has no prime divisor of the form $8t+5.$