Found problems: 15460
KoMaL A Problems 2022/2023, A. 841
Find all non-negative integer solutions of the equation $2^a+p^b=n^{p-1}$, where $p$ is a prime number.
Proposed by [i]Máté Weisz[/i], Cambridge
2015 IMO Shortlist, N4
Suppose that $a_0, a_1, \cdots $ and $b_0, b_1, \cdots$ are two sequences of positive integers such that $a_0, b_0 \ge 2$ and \[ a_{n+1} = \gcd{(a_n, b_n)} + 1, \qquad b_{n+1} = \operatorname{lcm}{(a_n, b_n)} - 1. \] Show that the sequence $a_n$ is eventually periodic; in other words, there exist integers $N \ge 0$ and $t > 0$ such that $a_{n+t} = a_n$ for all $n \ge N$.
2009 Federal Competition For Advanced Students, P2, 5
Let $ n>1$ and for $ 1 \leq k \leq n$ let $ p_k \equal{} p_k(a_1, a_2, . . . , a_n)$ be the sum of the products of all possible combinations of k of the numbers $ a_1,a_2,...,a_n$. Furthermore let $ P \equal{} P(a_1, a_2, . . . , a_n)$ be the sum of all $ p_k$ with odd values of $ k$ less than or equal to $ n$.
How many different values are taken by $ a_j$ if all the numbers $ a_j (1 \leq j \leq n)$ and $ P$ are prime?
OIFMAT I 2010, 1
Let $ f (n) $ be a function that fulfills the following properties:
$\bullet$ For each natural $ n $, $ f (n) $ is an integer greater than or equal to $ 0 $.
$\bullet$ $f (n) = 2010 $, if $ n $ ends in $ 7 $. For example, $ f (137) = 2010 $.
$\bullet$ If $ a $ is a divisor of $ b $, then: $ f \left(\frac {b} {a} \right) = | f (b) -f (a) | $.
Find $ \displaystyle f (2009 ^ {2009 ^ {2009}}) $ and justify your answer.
2021 BMT, 24
Given that $x, y$, and $z$ are a combination of positive integers such that $xyz = 2(x + y + z)$, compute the sum of all possible values of $x + y + z$.
2021 MMATHS, Mixer Round
[b]p1.[/b] Prair takes some set $S$ of positive integers, and for each pair of integers she computes the positive difference between them. Listing down all the numbers she computed, she notices that every integer from $1$ to $10$ is on her list! What is the smallest possible value of $|S|$, the number of elements in her set $S$?
[b]p2.[/b] Jake has $2021$ balls that he wants to separate into some number of bags, such that if he wants any number of balls, he can just pick up some bags and take all the balls out of them. What is the least number of bags Jake needs?
[b]p3.[/b] Claire has stolen Cat’s scooter once again! She is currently at (0; 0) in the coordinate plane, and wants to ride to $(2, 2)$, but she doesn’t know how to get there. So each second, she rides one unit in the positive $x$ or $y$-direction, each with probability $\frac12$ . If the probability that she makes it to $(2, 2)$ during her ride can be expressed as $\frac{a}{b}$ for positive integers $a, b$ with $gcd(a, b) = 1$, then find $a + b$.
[b]p4.[/b] Triangle $ABC$ with $AB = BC = 6$ and $\angle ABC = 120^o$ is rotated about $A$, and suppose that the images of points $B$ and $C$ under this rotation are $B'$ and $C'$, respectively. Suppose that $A$, $B'$ and $C$ are collinear in that order. If the area of triangle $B'CC'$ can be expressed as $a - b\sqrt{c}$ for positive integers $a, b, c$ with csquarefree, find $a + b + c$.
[b]p5.[/b] Find the sum of all possible values of $a + b + c + d$ if $a, b, c, $d are positive integers satisfying
$$ab + cd = 100,$$
$$ac + bd = 500.$$
[b]p6.[/b] Alex lives in Chutes and Ladders land, which is set in the coordinate plane. Each step they take brings them one unit to the right or one unit up. However, there’s a chute-ladder between points $(1, 2)$ and $(2, 0)$ and a chute-ladder between points $(1, 3)$ and $(4, 0)$, whenever Alex visits an endpoint on a chute-ladder, they immediately appear at the other endpoint of that chute-ladder! How many ways are there for Alex to go from $(0, 0)$ to $(4, 4)$?
[b]p7.[/b] There are $8$ identical cubes that each belong to $8$ different people. Each person randomly picks a cube. The probability that exactly $3$ people picked their own cube can be written as $\frac{a}{b}$ , where $a$ and $b$ are positive integers with $gcd(a, b) = 1$. Find $a + b$.
[b]p8.[/b] Suppose that $p(R) = Rx^2 + 4x$ for all $R$. There exist finitely many integer values of $R$ such that $p(R)$ intersects the graph of $x^3 + 2021x^2 + 2x + 1$ at some point $(j, k)$ for integers $j$ and $k$. Find the sum of all possible values of $R$.
[b]p9.[/b] Let $a, b, c$ be the roots of the polynomial $x^3 - 20x^2 + 22$. Find $\frac{bc}{a^2} +\frac{ac}{b^2} +\frac{ab}{c^2}$.
[b]p10.[/b] In any finite grid of squares, some shaded and some not, for each unshaded square, record the number of shaded squares horizontally or vertically adjacent to it, this grid’s score is the sum of all numbers recorded this way. Deyuan shades each square in a blank $n \times n$ grid with probability $k$; he notices that the expected value of the score of the resulting grid is equal to $k$, too! Given that $k > 0.9999$, find the minimum possible value of $n$.
[b]p11.[/b] Find the sum of all $x$ from $2$ to $1000$ inclusive such that $$\prod^x_{n=2} \log_{n^n}(n + 1)^{n+2}$$ is an integer.
[b]p12.[/b] Let triangle $ABC$ with incenter $I$ and circumcircle $\Gamma$ satisfy $AB = 6\sqrt3$, $BC = 14$, and $CA = 22$. Construct points $P$ and $Q$ on rays $BA$ and $CA$ such that $BP = CQ = 14$. Lines $PI$ and $QI$ meet the tangents from $B$ and $C$ to $\Gamma$, respectively, at points $X$ and $Y$ . If $XY$ can be expressed as $a\sqrt{b}-c$ for positive integers $a, b, c$ with $c$ squarefree, find $a + b + c$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2017 Mediterranean Mathematics Olympiad, Problem 3
A set $S$ of integers is Balearic, if there are two (not necessarily distinct) elements
$s,s'\in S$ whose sum $s+s'$ is a power of two; otherwise it is called a non-Balearic set.
Find an integer $n$ such that $\{1,2,\ldots,n\}$ contains a 99-element non-Balearic set,
whereas all the 100-element subsets are Balearic.
2019 Saudi Arabia JBMO TST, 3
Are there positive integers $a, b, c$, such that the numbers $a^2bc+2, b^2ca+2, c^2ab+2$ be perfect squares?
2018 Korea Junior Math Olympiad, 4
For a positive integer $n$, denote $p(n)$ to be the number of nonnegative integer tuples $(x,y,z,w)$ such that $x+2y+2z+3w=n$. Also, denote $q(n)$ to be the number of nonnegative integer tuples $(a,b,c,d)$ such that
(i) $a+b+c+d=n$
(ii) $a \ge b \ge d$
(iii) $a \ge c \ge d$
Prove that for all $n$, $p(n) = q(n)$.
2009 Finnish National High School Mathematics Competition, 4
We say that the set of step lengths $D\subset \mathbb{Z}_+=\{1,2,\ldots\}$ is [i]excellent[/i] if it has the following property: If we split the set of integers into two subsets $A$ and $\mathbb{Z}\setminus{A}$, at least other set contains element $a-d,a,a+d$ (i.e. $\{a-d,a,a+d\} \subset A$ or $\{a-d,a,a+d\}\in \mathbb{Z}\setminus A$ from some integer $a\in \mathbb{Z},d\in D$.) For example the set of one element $\{1\}$ is not excellent as the set of integer can be split into even and odd numbers, and neither of these contains three consecutive integer. Show that the set $\{1,2,3,4\}$ is excellent but it has no proper subset which is excellent.
2015 Germany Team Selection Test, 2
A positive integer $n$ is called [i]naughty[/i] if it can be written in the form $n=a^b+b$ with integers $a,b \geq 2$.
Is there a sequence of $102$ consecutive positive integers such that exactly $100$ of those numbers are naughty?
2014 Taiwan TST Round 3, 2
Alice and Bob play the following game. They alternate selecting distinct nonzero digits (from $1$ to $9$) until they have chosen seven such digits, and then consider the resulting seven-digit number by concatenating the digits in the order selected, with the seventh digit appearing last (i.e. $\overline{A_1B_2A_3B_4A_6B_6A_7}$). Alice wins if and only if the resulting number is the last seven decimal digits of some perfect seventh power. Please determine which player has the winning strategy.
2023 Durer Math Competition (First Round), 3
In a Greek village of $100$ inhabitants in the beginning there lived $12$ Olympians and $88$ humans, they were the first generation. The Olympians are $100\%$ gods while humans are $0\%$ gods. In each generation they formed $50$ couples and each couple had $2$ children, who form the next generation (also consisting of $100$ members). From the second generation onwards, every person’s percentage of godness is the average of the percentages of his/her parents’ percentages. (For example the children of $25\%$ and $12.5\% $gods are $18.75\%$ gods.)
a) Which is the earliest generation in which it is possible that there are equally many $100\%$ gods as $ 0\%$ gods?
b) At most how many members of the fifth generation are at least 25% gods?
2015 BMT Spring, 5
Determine the smallest positive integer containing only $0$ and $1$ as digits that is divisible by each integer $1$ through $9$.
2021 Polish Junior MO First Round, 1
Is there a six-digit number where every two consecutive digits make up a certain number two-digit number that is the square of an integer? Justify your answer.
2014 European Mathematical Cup, 1
Prove that there exist infinitely many positive integers which cannot be written in form $a^{d(a)}+b^{d(b)}$ for some positive integers $a$ and $b$
For positive integer $d(a)$ denotes number of positive divisors of $a$
[i]Proposed by Borna Vukorepa[/i]
2011 China Northern MO, 5
If the positive integers $a, b, c$ satisfy $a^2+b^2=c^2$, then $(a, b, c)$ is called a Pythagorean triple. Find all Pythagorean triples containing $30$.
2021 Thailand Online MO, P8
Let $\mathbb N$ be the set of positive integers. Determine all functions $f:\mathbb N\times\mathbb N\to\mathbb N$ that satisfy both of the following conditions:
[list]
[*]$f(\gcd (a,b),c) = \gcd (a,f(c,b))$ for all $a,b,c \in \mathbb{N}$.
[*]$f(a,a) \geq a$ for all $a \in \mathbb{N}$.
[/list]
2022 China Team Selection Test, 3
Given a positive integer $n \ge 2$. Find all $n$-tuples of positive integers $(a_1,a_2,\ldots,a_n)$, such that $1<a_1 \le a_2 \le a_3 \le \cdots \le a_n$, $a_1$ is odd, and
(1) $M=\frac{1}{2^n}(a_1-1)a_2 a_3 \cdots a_n$ is a positive integer;
(2) One can pick $n$-tuples of integers $(k_{i,1},k_{i,2},\ldots,k_{i,n})$ for $i=1,2,\ldots,M$ such that for any $1 \le i_1 <i_2 \le M$, there exists $j \in \{1,2,\ldots,n\}$ such that $k_{i_1,j}-k_{i_2,j} \not\equiv 0, \pm 1 \pmod{a_j}$.
2011 Puerto Rico Team Selection Test, 4
Given 11 natural numbers under 21, show that you can choose two such that one divides the other.
1971 IMO Longlists, 2
Let us denote by $s(n)= \sum_{d|n} d$ the sum of divisors of a positive integer $n$ ($1$ and $n$ included). If $n$ has at most $5$ distinct prime divisors, prove that $s(n) < \frac{77}{16} n.$ Also prove that there exists a natural number $n$ for which $s(n) < \frac{76}{16} n$ holds.
2017 Princeton University Math Competition, 15
How many ordered pairs of positive integers $(x, y)$ satisfy $yx^y = y^{2017}$?
2012 NIMO Summer Contest, 10
A [i]triangulation[/i] of a polygon is a subdivision of the polygon into triangles meeting edge to edge, with the property that the set of triangle vertices coincides with the set of vertices of the polygon. Adam randomly selects a triangulation of a regular $180$-gon. Then, Bob selects one of the $178$ triangles in this triangulation. The expected number of $1^\circ$ angles in this triangle can be expressed as $\frac{a}{b}$, where $a$ and $b$ are relatively prime positive integers. Compute $100a + b$.
[i]Proposed by Lewis Chen[/i]
2012 Math Hour Olympiad, 8-10
[u]Round 1 [/u]
[b]p1.[/b] In the Hundred Acre Wood, all the animals are either knights or liars. Knights always tell the truth and liars always lie. One day in the Wood, Winnie-the-Pooh, a knight, decides to visit his friend Rabbit, also a noble knight. Upon arrival, Pooh finds his friend sitting at a round table with $5$ other guests.
One-by-one, Pooh asks each person at the table how many of his two neighbors are knights. Surprisingly, he gets the same answer from everybody! "Oh bother!" proclaims Pooh. "I still don't have enough information to figure out how many knights are at this table." "But it's my birthday," adds one of the guests. "Yes, it's his birthday!" agrees his neighbor.
Now Pooh can tell how many knights are at the table. Can you?
[b]p2.[/b] Harry has an $8 \times 8$ board filled with the numbers $1$ and $-1$, and the sum of all $64$ numbers is $0$. A magical cut of this board is a way of cutting it into two pieces so that the sum of the numbers in each piece is also $0$. The pieces should not have any holes. Prove that Harry will always be able to find a magical cut of his board. (The picture shows an example of a proper cut.)
[img]https://cdn.artofproblemsolving.com/attachments/4/b/98dec239cfc757e6f2996eef7876cbfd79d202.png[/img]
[b]p3.[/b] Several girls participate in a tennis tournament in which each player plays each other player exactly once. At the end of the tournament, it turns out that each player has lost at least one of her games. Prove that it is possible to find three players $A$, $B$, and $C$ such that $A$ defeated $B$, $B$ defeated $C$, and $C$ defeated $A$.
[b]p4.[/b] $120$ bands are participating in this year's Northwest Grunge Rock Festival, and they have $119$ fans in total. Each fan belongs to exactly one fan club. A fan club is called crowded if it has at least $15$ members.
Every morning, all the members of one of the crowded fan clubs start arguing over who loves their favorite band the most. As a result of the fighting, each of them leaves the club to join another club, but no two of them join the same one.
Is it true that, no matter how the clubs are originally arranged, all these arguments will eventually stop?
[b]p5.[/b] In Infinite City, the streets form a grid of squares extending infinitely in all directions. Bonnie and Clyde have just robbed the Infinite City Bank, located at the busiest intersection downtown. Bonnie sets off heading north on her bike, and, $30$ seconds later, Clyde bikes after her in the same direction. They each bike at a constant speed of $1$ block per minute. In order to throw off any authorities, each of them must turn either left or right at every intersection. If they continue biking in this manner, will they ever be able to meet?
[u]Round 2 [/u]
[b]p6.[/b] In a certain herd of $33$ cows, each cow weighs a whole number of pounds. Farmer Dan notices that if he removes any one of the cows from the herd, it is possible to split the remaining $32$ cows into two groups of equal total weight, $16$ cows in each group. Show that all $33$ cows must have the same weight.
[b]p7.[/b] Katniss is thinking of a positive integer less than $100$: call it $x$. Peeta is allowed to pick any two positive integers $N$ and $M$, both less than $100$, and Katniss will give him the greatest common divisor of $x+M$ and $N$ . Peeta can do this up to seven times, after which he must name Katniss' number $x$, or he will die. Can Peeta ensure his survival?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2023 Princeton University Math Competition, A2 / B4
A number is called [i]good[/i] if it can be written as the sum of the squares of three consecutive positive integers. A number is called excellent if it can be written as the sum of the squares of four consecutive positive integers. (For instance, $14 = 1^2 + 2^2 + 3^2$ is good and $30 =1^2 +2^2 +3^2+4^2$ is excellent.) A good number $G$ is called [i]splendid[/i] if there exists an excellent number $E$ such that $3G-E = 2025.$ If the sum of all splendid numbers is $S,$ find the remainder when $S$ is divided by $1000.$