Found problems: 15460
2009 Czech and Slovak Olympiad III A, 1
Knowing that the numbers $p, 3p+2, 5p+4, 7p+6, 9p+8$, and $11p+10$ are all primes, prove that $6p+11$ is a composite number.
2017 LMT, individual
[b]p1.[/b] Find the number of zeroes at the end of $20^{17}$.
[b]p2.[/b] Express $\frac{1}{\sqrt{20} +\sqrt{17}}$ in simplest radical form.
[b]p3.[/b] John draws a square $ABCD$. On side $AB$ he draws point $P$ so that $\frac{BP}{PA}=\frac{1}{20}$ and on side $BC$ he draws point $Q$ such that $\frac{BQ}{QC}=\frac{1}{17}$ . What is the ratio of the area of $\vartriangle PBQ$ to the area of $ABCD$?
[b]p4.[/b] Alfred, Bill, Clara, David, and Emily are sitting in a row of five seats at a movie theater. Alfred and Bill don’t want to sit next to each other, and David and Emily have to sit next to each other. How many arrangements can they sit in that satisfy these constraints?
[b]p5.[/b] Alex is playing a game with an unfair coin which has a $\frac15$ chance of flipping heads and a $\frac45$ chance of flipping tails. He flips the coin three times and wins if he flipped at least one head and one tail. What is the probability that Alex wins?
[b]p6.[/b] Positive two-digit number $\overline{ab}$ has $8$ divisors. Find the number of divisors of the four-digit number $\overline{abab}$.
[b]p7.[/b] Call a positive integer $n$ diagonal if the number of diagonals of a convex $n$-gon is a multiple of the number of sides. Find the number of diagonal positive integers less than or equal to $2017$.
[b]p8.[/b] There are $4$ houses on a street, with $2$ on each side, and each house can be colored one of 5 different colors. Find the number of ways that the houses can be painted such that no two houses on the same side of the street are the same color and not all the houses are different colors.
[b]p9.[/b] Compute $$|2017 -|2016| -|2015-| ... |3-|2-1|| ...||||.$$
[b]p10.[/b] Given points $A,B$ in the coordinate plane, let $A \oplus B$ be the unique point $C$ such that $\overline{AC}$ is parallel to the $x$-axis and $\overline{BC}$ is parallel to the $y$-axis. Find the point $(x, y)$ such that $((x, y) \oplus (0, 1)) \oplus (1,0) = (2016,2017) \oplus (x, y)$.
[b]p11.[/b] In the following subtraction problem, different letters represent different nonzero digits.
$\begin{tabular}{ccccc}
& M & A & T & H \\
- & & H & A & M \\
\hline
& & L & M & T \\
\end{tabular}$
How many ways can the letters be assigned values to satisfy the subtraction problem?
[b]p12.[/b] If $m$ and $n$ are integers such that $17n +20m = 2017$, then what is the minimum possible value of $|m-n|$?
[b]p13. [/b]Let $f(x)=x^4-3x^3+2x^2+7x-9$. For some complex numbers $a,b,c,d$, it is true that $f (x) = (x^2+ax+b)(x^2+cx +d)$ for all complex numbers $x$. Find $\frac{a}{b}+ \frac{c}{d}$.
[b]p14.[/b] A positive integer is called an imposter if it can be expressed in the form $2^a +2^b$ where $a,b$ are non-negative integers and $a \ne b$. How many almost positive integers less than $2017$ are imposters?
[b]p15.[/b] Evaluate the infinite sum $$\sum^{\infty}_{n=1} \frac{n(n +1)}{2^{n+1}}=\frac12 +\frac34+\frac68+\frac{10}{16}+\frac{15}{32}+...$$
[b]p16.[/b] Each face of a regular tetrahedron is colored either red, green, or blue, each with probability $\frac13$ . What is the probability that the tetrahedron can be placed with one face down on a table such that each of the three visible faces are either all the same color or all different colors?
[b]p17.[/b] Let $(k,\sqrt{k})$ be the point on the graph of $y=\sqrt{x}$ that is closest to the point $(2017,0)$. Find $k$.
[b]p18.[/b] Alice is going to place $2016$ rooks on a $2016 \times 2016$ chessboard where both the rows and columns are labelled $1$ to $2016$; the rooks are placed so that no two rooks are in the same row or the same column. The value of a square is the sum of its row number and column number. The score of an arrangement of rooks is the sumof the values of all the occupied squares. Find the average score over all valid configurations.
[b]p19.[/b] Let $f (n)$ be a function defined recursively across the natural numbers such that $f (1) = 1$ and $f (n) = n^{f (n-1)}$. Find the sum of all positive divisors less than or equal to $15$ of the number $f (7)-1$.
[b]p20.[/b] Find the number of ordered pairs of positive integers $(m,n)$ that satisfy
$$gcd \,(m,n)+ lcm \,(m,n) = 2017.$$
[b]p21.[/b] Let $\vartriangle ABC$ be a triangle. Let $M$ be the midpoint of $AB$ and let $P$ be the projection of $A$ onto $BC$. If $AB = 20$, and $BC = MC = 17$, compute $BP$.
[b]p22.[/b] For positive integers $n$, define the odd parent function, denoted $op(n)$, to be the greatest positive odd divisor of $n$. For example, $op(4) = 1$, $op(5) = 5$, and $op(6) =3$. Find $\sum^{256}_{i=1}op(i).$
[b]p23.[/b] Suppose $\vartriangle ABC$ has sidelengths $AB = 20$ and $AC = 17$. Let $X$ be a point inside $\vartriangle ABC$ such that $BX \perp CX$ and $AX \perp BC$. If $|BX^4 -CX^4|= 2017$, the compute the length of side $BC$.
[b]p24.[/b] How many ways can some squares be colored black in a $6 \times 6$ grid of squares such that each row and each column contain exactly two colored squares? Rotations and reflections of the same coloring are considered distinct.
[b]p25.[/b] Let $ABCD$ be a convex quadrilateral with $AB = BC = 2$, $AD = 4$, and $\angle ABC = 120^o$. Let $M$ be the midpoint of $BD$. If $\angle AMC = 90^o$, find the length of segment $CD$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
KoMaL A Problems 2023/2024, A. 863
Let $n\ge 2$ be a given integer. Find the greatest value of $N$, for which the following is true: there are infinitely many ways to find $N$ consecutive integers such that none of them has a divisor greater than $1$ that is a perfect $n^{\mathrm{th}}$ power.
[i]Proposed by Péter Pál Pach, Budapest[/i]
1999 Brazil Team Selection Test, Problem 4
Let Q+ and Z denote the set of positive rationals and the set of inte-
gers, respectively. Find all functions f : Q+ → Z satisfying the following
conditions:
(i) f(1999) = 1;
(ii) f(ab) = f(a) + f(b) for all a, b ∈ Q+;
(iii) f(a + b) ≥ min{f(a), f(b)} for all a, b ∈ Q+.
V Soros Olympiad 1998 - 99 (Russia), grade7
[b]p1.[/b] Due to the crisis, the salaries of the company's employees decreased by $1/5$. By what percentage should it be increased in order for it to reach its previous value?
[b]p2.[/b] Can the sum of six different positive numbers equal their product?
[b]p3.[/b] Points$ A, B, C$ and $B$ are marked on the straight line. It is known that $AC = a$ and $BP = b$. What is the distance between the midpoints of segments $AB$ and $CB$? List all possibilities.
[b]p4.[/b] Find the last three digits of $625^{19} + 376^{99}$.
[b]p5.[/b] Citizens of five different countries sit at the round table (there may be several representatives from one country). It is known that for any two countries (out of the given five) there will be citizens of these countries sitting next to each other. What is the smallest number of people that can sit at the table?
[b]p6.[/b] Can any rectangle be cut into $1999$ pieces, from which you can form a square?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c2416727_soros_olympiad_in_mathematics]here.[/url]
2021 Regional Olympiad of Mexico West, 2
Prove that in every $16$-digit number there is a chain of one or more consecutive digits such that the product of those digits is a perfect square.
For example, if the original number is $7862328578632785$ we can take the digits $6$, $2$ and $3$ whose product is $6^2$ (note that these appear consecutively in the number).
2014 Saint Petersburg Mathematical Olympiad, 5
$M$ is infinite set of natural numbers. If $a,b, a\neq b$ are in $M$, then $a^b+2$ or $a^b-2$ ( or both) are in $M$. Prove that there is composite number in $M$
2005 Belarusian National Olympiad, 6
$f(n+f(n))=f(n)$ for every $n \in \mathbb{N}$.
a)Prove, that if $f(n)$ is finite, then $f$ is periodic.
b) Give example nonperiodic function.
PS. $0 \not \in \mathbb{N}$
2020 Purple Comet Problems, 5
Let $P$ be the set of positive integers that are prime numbers. Find the number of subsets of $P$ that have the property that the sum of their elements is $34$ such as $\{3, 31\}$.
2011 IFYM, Sozopol, 8
Let $a$ and $b$ be some rational numbers and there exist $n$, such that $\sqrt[n]{a}+\sqrt[b]{b}$ is also a rational number. Prove that $\sqrt[n]{a}$ is a rational number.
1986 Tournament Of Towns, (108) 2
A natural number $N$ is written in its decimal representation . It is known that for each digit in this representation , this digit divides exactly into the number $N$ (the digit $0$ is not encountered). What is the maximum number of different digits which there can be in such a representation of $N$?
(S . Fomin, Leningrad)
2014 Tuymaada Olympiad, 1
Four consecutive three-digit numbers are divided respectively by four consecutive two-digit numbers. What minimum number of different remainders can be obtained?
[i](A. Golovanov)[/i]
Kvant 2024, M2816
Find out for which natural numbers $m$ it is possible to find a natural $\ell$ such that the sum of $n+n^2+n^3+\ldots+n^\ell$ will be divisible by $m$ for any natural $n$.
[i]A. Skabelin[/i]
2021 Science ON grade V, 1
Consider the prime numbers $p_1,p_2,\dots ,p_{2021}$ such that the sum
$$p_1^4+p_2^4+\dots +p_{2021}^4$$
is divisible by $6060$. Prove that at least $4$ of these prime numbers are less than $2021$.
$\textit{Stefan Bălăucă}$
2018 Auckland Mathematical Olympiad, 2
Starting with a list of three numbers, the “[i]Make-My-Day[/i]” procedure creates a new list by replacing each number by the sum of the other two. For example, from $\{1, 3, 8\}$ “[i]Make-My-Day[/i]” gives $\{11, 9, 4\}$ and a new “[i]MakeMy-Day[/i]” leads to $\{13, 15, 20\}$. If we begin with $\{20, 1, 8\}$, what is the maximum difference between two numbers on the list after $2018$ consecutive “[i]Make-My-Day[/i]”s?
2022 Moscow Mathematical Olympiad, 1
There are two types of items in Alik's collection: badges and bracelets and there are more badges than bracelets. Alik noticed that if he increases the number of bracelets some (not necessarily integer) number of times without changing the number of icons, then in its collection will be $100$ items. And if, on the contrary, he increases the initial number of badges by the same number of times, leaving the same number of bracelets, then he will have $101$ items.
How many badges and how many bracelets could there be in Alik's collection?
2013 Princeton University Math Competition, 5
Let $A$ be the greatest possible value of a product of positive integers that sums to $2014$. Compute the sum of all bases and exponents in the prime factorization of $A$. For example, if $A=7\cdot 11^5$, the answer would be $7+11+5=23$.
2020 Princeton University Math Competition, B2
Prove that there is a positive integer $M$ for which the following statement holds:
For all prime numbers $p$, there is an integer $n$ for which $\sqrt{p} \le n \le M\sqrt{p}$ and $p \mod n \le \frac{n}{2020}$ .
Note: Here, $p \mod n$ denotes the unique integer $r \in {0, 1, ..., n - 1}$ for which $n|p -r$. In other words, $p \mod n$ is the residue of $p$ upon division by $n$.
2007 Greece Junior Math Olympiad, 2
If $n$ is is an integer such that $4n+3$ is divisible by $11,$ find the form of $n$ and the remainder of $n^{4}$ upon division by $11$.
2007 Croatia Team Selection Test, 8
Positive integers $x>1$ and $y$ satisfy an equation $2x^2-1=y^{15}$. Prove that 5 divides $x$.
EMCC Accuracy Rounds, 2017
[b]p1.[/b] Chris goes to Matt's Hamburger Shop to buy a hamburger. Each hamburger must contain exactly one bread, one lettuce, one cheese, one protein, and at least one condiment. There are two kinds of bread, two kinds of lettuce, three kinds of cheese, three kinds of protein, and six different condiments: ketchup, mayo, mustard, dill pickles, jalape~nos, and Matt's Magical Sunshine Sauce. How many different hamburgers can Chris make?
[b]p2.[/b] The degree measures of the interior angles in convex pentagon $NICKY$ are all integers and form an increasing arithmetic sequence in some order. What is the smallest possible degree measure of the pentagon's smallest angle?
[b]p3.[/b] Daniel thinks of a two-digit positive integer $x$. He swaps its two digits and gets a number $y$ that is less than $x$. If $5$ divides $x-y$ and $7$ divides $x+y$, find all possible two-digit numbers Daniel could have in mind.
[b]p4.[/b] At the Lio Orympics, a target in archery consists of ten concentric circles. The radii of the circles are $1$, $2$, $3$, $...$, $9$, and $10$ respectively. Hitting the innermost circle scores the archer $10$ points, the next ring is worth $9$ points, the next ring is worth 8 points, all the way to the outermost ring, which is worth $1$ point. If a beginner archer has an equal probability of hitting any point on the target and never misses the target, what is the probability that his total score after making two shots is even?
[b]p5.[/b] Let $F(x) = x^2 + 2x - 35$ and $G(x) = x^2 + 10x + 14$. Find all distinct real roots of $F(G(x)) = 0$.
[b]p6.[/b] One day while driving, Ivan noticed a curious property on his car's digital clock. The sum of the digits of the current hour equaled the sum of the digits of the current minute. (Ivan's car clock shows $24$-hour time; that is, the hour ranges from $0$ to $23$, and the minute ranges from $0$ to $59$.) For how many possible times of the day could Ivan have observed this property?
[b]p7.[/b] Qi Qi has a set $Q$ of all lattice points in the coordinate plane whose $x$- and $y$-coordinates are between $1$ and $7$ inclusive. She wishes to color $7$ points of the set blue and the rest white so that each row or column contains exactly $1$ blue point and no blue point lies on or below the line $x + y = 5$. In how many ways can she color the points?
[b]p8.[/b] A piece of paper is in the shape of an equilateral triangle $ABC$ with side length $12$. Points $A_B$ and $B_A$ lie on segment $AB$, such that $AA_B = 3$, and $BB_A = 3$. Define points $B_C$ and $C_B$ on segment $BC$ and points $C_A$ and $A_C$ on segment $CA$ similarly. Point $A_1$ is the intersection of $A_CB_C$ and $A_BC_B$. Define $B_1$ and $C_1$ similarly. The three rhombi - $AA_BA_1A_C$,$BB_CB_1B_A$, $CC_AC_1C_B$ - are cut from triangle $ABC$, and the paper is folded along segments $A_1B_1$, $B_1C_1$, $C_1A_1$, to form a tray without a top. What is the volume of this tray?
[b]p9.[/b] Define $\{x\}$ as the fractional part of $x$. Let $S$ be the set of points $(x, y)$ in the Cartesian coordinate plane such that $x + \{x\} \le y$, $x \ge 0$, and $y \le 100$. Find the area of $S$.
[b]p10.[/b] Nicky likes dolls. He has $10$ toy chairs in a row, and he wants to put some indistinguishable dolls on some of these chairs. (A chair can hold only one doll.) He doesn't want his dolls to get lonely, so he wants each doll sitting on a chair to be adjacent to at least one other doll. How many ways are there for him to put any number (possibly none) of dolls on the chairs? Two ways are considered distinct if and only if there is a chair that has a doll in one way but does not have one in the other.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2024 All-Russian Olympiad Regional Round, 9.10
Does there exist a positive integer $n>10^{100}$, such that $n^2$ and $(n+1)^2$ satisfy the following property: every digit occurs equal number of times in the decimal representations of each number?
2020 China Team Selection Test, 4
Show that the following equation has finitely many solutions $(t,A,x,y,z)$ in positive integers
$$\sqrt{t(1-A^{-2})(1-x^{-2})(1-y^{-2})(1-z^{-2})}=(1+x^{-1})(1+y^{-1})(1+z^{-1})$$
2020 Thailand TSTST, 2
For any positive integer $m \geq 2$, let $p(m)$ be the smallest prime dividing $m$ and $P(m)$ be the largest prime dividing $m$. Let $C$ be a positive integer. Define sequences $\{a_n\}$ and $\{b_n\}$ by $a_0 = b_0 = C$ and, for each positive integer $k$ such that $a_{k-1}\geq 2$,
$$a_k=a_{k-1}-\frac{a_{k-1}}{p(a_{k-1})};$$
and, for each positive integer $k$ such that $b_{k-1}\geq 2$,
$$b_k=b_{k-1}-\frac{b_{k-1}}{P(b_{k-1})}$$
It is easy to see that both $\{a_n\}$ and $\{b_n\}$ are finite sequences which terminate when they reach the number $1$.
Prove that the numbers of terms in the two sequences are always equal.
2015 USA TSTST, 5
Let $\varphi(n)$ denote the number of positive integers less than $n$ that are relatively prime to $n$. Prove that there exists a positive integer $m$ for which the equation $\varphi(n)=m$ has at least $2015$ solutions in $n$.
[i]Proposed by Iurie Boreico[/i]