Found problems: 15460
2024 Bulgarian Winter Tournament, 9.2
Let $p>q$ be primes, such that $240 \nmid p^4-q^4$. Find the maximal value of $\frac{q} {p}$.
2022 BMT, 11
Kylie is trying to count to $202250$. However, this would take way too long, so she decides to only write down positive integers from $1$ to $202250$, inclusive, that are divisible by $125$. How many times does she write down the digit $2$?
2019 ABMC, 2019 Nov
[b]p1.[/b] The remainder of a number when divided by $7$ is $5$. If I multiply the number by $32$ and add $18$ to the product, what is the new remainder when divided by $7$?
[b]p2.[/b] If a fair coin is flipped $15$ times, what is the probability that there are more heads than tails?
[b]p3.[/b] Let $-\frac{\sqrt{p}}{q}$ be the smallest nonzero real number such that the reciprocal of the number is equal to the number minus the square root of the square of the number, where $p$ and $q$ are positive integers and $p$ is not divisible the square of any prime. Find $p + q$.
[b]p4.[/b] Rachel likes to put fertilizers on her grass to help her grass grow. However, she has cows there as well, and they eat $3$ little fertilizer balls on average. If each ball is spherical with a radius of $4$, then the total volume that each cow consumes can be expressed in the form $a\pi$ where $a$ is an integer. What is $a$?
[b]p5.[/b] One day, all $30$ students in Precalc class are bored, so they decide to play a game. Everyone enters into their calculators the expression $9 \diamondsuit 9 \diamondsuit 9 ... \diamondsuit 9$, where $9$ appears $2020$ times, and each $\diamondsuit$ is either a multiplication or division sign. Each student chooses the signs randomly, but they each choose one more multiplication sign than division sign. Then all $30$ students calculate their expression and take the class average. Find the expected value of the class average.
[b]p6.[/b] NaNoWriMo, or National Novel Writing Month, is an event in November during which aspiring writers attempt to produce novel-length work - formally defined as $50,000$ words or more - within the span of $30$ days. Justin wants to participate in NaNoWriMo, but he's a busy high school student: after accounting for school, meals, showering, and other necessities, Justin only has six hours to do his homework and perhaps participate in NaNoWriMo on weekdays. On weekends, he has twelve hours on Saturday and only nine hours on Sunday, because he goes to church. Suppose Justin spends two hours on homework every single day, including the weekends. On Wednesdays, he has science team, which takes up another hour and a half of his time. On Fridays, he spends three hours in orchestra rehearsal. Assume that he spends all other time on writing. Then, if November $1$st is a Friday, let $w$ be the minimum number of words per minute that Justin must type to finish the novel. Round $w$ to the nearest whole number.
[b]p7.[/b] Let positive reals $a$, $b$, $c$ be the side lengths of a triangle with area $2030$. Given $ab + bc + ca = 15000$ and $abc = 350000$, find the sum of the lengths of the altitudes of the triangle.
[b]p8.[/b] Find the minimum possible area of a rectangle with integer sides such that a triangle with side lengths $3$, $4$, $5$, a triangle with side lengths $4$, $5$, $6$, and a triangle with side lengths $\frac94$, $4$, $4$ all fit inside the rectangle without overlapping.
[b]p9.[/b] The base $16$ number $10111213...99_{16}$, which is a concatenation of all of the (base $10$) $2$-digit numbers, is written on the board. Then, the last $2n$ digits are erased such that the base $10$ value of remaining number is divisible by $51$. Find the smallest possible integer value of $n$.
[b]p10.[/b] Consider sequences that consist entirely of $X$'s, $Y$ 's and $Z$'s where runs of consecutive $X$'s, $Y$ 's, and $Z$'s are at most length $3$. How many sequences with these properties of length $8$ are there?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2016 Taiwan TST Round 2, 2
Let $\left< F_n\right>$ be the Fibonacci sequence, that is, $F_0=0$, $F_1=1$, and $F_{n+2}=F_{n+1}+F_{n}$ holds for all nonnegative integers $n$.
Find all pairs $(a,b)$ of positive integers with $a < b$ such that $F_n-2na^n$ is divisible by $b$ for all positive integers $n$.
2009 ELMO Problems, 6
Let $p$ be an odd prime and $x$ be an integer such that $p \mid x^3 - 1$ but $p \nmid x - 1$. Prove that \[ p \mid (p - 1)!\left(x - \frac {x^2}{2} + \frac {x^3}{3} - \cdots - \frac {x^{p - 1}}{p - 1}\right).\][i]John Berman[/i]
2007 Stars of Mathematics, 2
Find all natural numbers $ n,x,y $ such that $ \big| 2^x-n^{y+1}\big| =1 . $
2013 AMC 10, 17
Daphne is visited periodically by her three best friends: Alice, Beatrix, and Claire. Alice visits every third day, Beatrix visits every fourth day, and Claire visits every fifth day. All three friends visited Daphne yesterday. How many days of the next $365$-day period will exactly two friends visit her?
$\textbf{(A) }48\qquad
\textbf{(B) }54\qquad
\textbf{(C) }60\qquad
\textbf{(D) }66\qquad
\textbf{(E) }72\qquad$
1996 IMO, 4
The positive integers $ a$ and $ b$ are such that the numbers $ 15a \plus{} 16b$ and $ 16a \minus{} 15b$ are both squares of positive integers. What is the least possible value that can be taken on by the smaller of these two squares?
1997 Korea - Final Round, 6
Let $ p_1,p_2,\dots,p_r$ be distinct primes, and let $ n_1,n_2,\dots,n_r$ be arbitrary natural numbers. Prove that the number of pairs of integers $ (x, y)$ such that
\[ x^3 \plus{} y^3 \equal{} p_1^{n_1}p_2^{n_2}\cdots p_r^{n_r}\]
does not exceed $ 2^{r\plus{}1}$.
2016 Costa Rica - Final Round, N2
Determine all positive integers $a$ and $b$ for which $a^4 + 4b^4$ be a prime number.
2015 Tuymaada Olympiad, 6
Is there sequence $(a_n)$ of natural numbers, such that differences $\{a_{n+1}-a_n\}$ take every natural value and only one time and differences $\{a_{n+2}-a_n\}$ take every natural value greater $2015$ and only one time ?
[i]A. Golovanov[/i]
2019 Auckland Mathematical Olympiad, 3
Let $x$ be the smallest positive integer that cannot be expressed in the form $\frac{2^a - 2^b}{2^c - 2^d}$, where $a$, $b$, $c$, $d$ are non-negative integers. Prove that $x$ is odd.
2018 Iran Team Selection Test, 3
$n>1$ and distinct positive integers $a_1,a_2,\ldots,a_{n+1}$ are given. Does there exist a polynomial $p(x)\in\Bbb{Z}[x]$ of degree $\le n$ that satisfies the following conditions?
a. $\forall_{1\le i < j\le n+1}: \gcd(p(a_i),p(a_j))>1 $
b. $\forall_{1\le i < j < k\le n+1}: \gcd(p(a_i),p(a_j),p(a_k))=1 $
[i]Proposed by Mojtaba Zare[/i]
1989 Irish Math Olympiad, 5
(i): Prove that if $n$ is a positive integer, then $$\binom{2n}{n}=\frac{(2n)!}{(n!)^2}$$ is a positive integer that is divisible by all prime numbers $p$ with $n<p\le 2n$, and that $$\binom{2n}{n}<2^{2n}.$$
(ii): For $x$ a positive real number, let $\pi(x)$ denote the number of prime numbers $p \le x$. [Thus, $\pi(10) = 4$ since there are $4$ primes, viz., $2$, $3$, $5$, and $7$, not exceeding $10$.]Prove that if $n \ge 3$ is an integer, then
(a)$$\pi(2n) < \pi(n) + {{2n}\over{\log_2(n)}};$$(b)$$\pi(2^n) < {{2^{n+1}\log_2(n-1)}\over{n}};$$(c) Deduce that, for all real numbers $x \ge 8$,$$\pi(x) < {{4x \log_2(\log_2(x))}\over{\log_2(x)}}.$$
2011 Akdeniz University MO, 4
$a_n$ sequence is a arithmetic sequence with all terms be positive integers. (for $a_n$ non-constant sequence) Let $p_n$ is greatest prime divisor of $a_n$. Prove that
$$(\frac{a_n}{p_n})$$
sequence is infinity.
[hide]Note:
If we find a $M>0$ constant such that $x_n \leq M$ for all $n \in {\mathbb N}$'s, $(x_n)$ sequence is non-infinite, but we can't find $M$, $(x_n)$ sequence is infinity [/hide]
2005 China Team Selection Test, 2
Given prime number $p$. $a_1,a_2 \cdots a_k$ ($k \geq 3$) are integers not divible by $p$ and have different residuals when divided by $p$. Let
\[ S_n= \{ n \mid 1 \leq n \leq p-1, (na_1)_p < \cdots < (na_k)_p \} \]
Here $(b)_p$ denotes the residual when integer $b$ is divided by $p$. Prove that $|S|< \frac{2p}{k+1}$.
2003 Iran MO (3rd Round), 3
assume that A is a finite subset of prime numbers, and a is an positive integer.
prove that there are only finitely many positive integers m s.t: prime divisors of a^m-1 are contained in A.
2020 May Olympiad, 2
a) Determine if there are positive integers $a, b$ and $c$, not necessarily distinct, such that
$a+b+c=2020$ and $2^a+2^b+2^c$ it's a perfect square.
b) Determine if there are positive integers $a, b$ and $c$, not necessarily distinct, such that
$a+b+c=2020$ and $3^a+3^b+3^c$ it's a perfect square.
2021 BMT, 11
Compute the sum of all prime numbers $p$ with $p \ge 5$ such that $p$ divides $(p + 3)^{p-3} + (p + 5)^{p-5}$.
.
2019 Nepal TST, P1
Prove that there exist infinitely many pairs of different positive integers $(m, n)$ for which $m!n!$ is a square of an integer.
[i]Proposed by Anton Trygub[/i]
2022 IFYM, Sozopol, 6
Let $D$ be an infinite in both sides sequence of $0$s and $1$s. For each positive integer $n$ we denote with $a_n$ the number of different subsequences of $0$s and $1$s in $D$ of length $n$. Does there exist a sequence $D$ for which for each $n\geq 22$ the number $a_n$ is equal to the $n$-th prime number?
2019 China Team Selection Test, 4
Prove that there exist a subset $A$ of $\{1,2,\cdots,2^n\}$ with $n$ elements, such that for any two different non-empty subset of $A$, the sum of elements of one subset doesn't divide another's.
Maryland University HSMC part II, 2013
[b]p1.[/b] A $10 \times 10$ array of squares is given. In each square, a student writes the product of the row number and the column number of the square (the upper left hand corner of this array is shown below). Determine the sum of the $100$ integers written in the array.
[img]https://cdn.artofproblemsolving.com/attachments/5/9/527fdf90529221f6d06af169de1728da296538.png[/img]
[b]p2.[/b] The equilateral triangle $DEF$ is inscribed in the equilateral triangle $ABC$ so that $ED$ is perpendicular to $BC$. If the area of $ABC$ equals one square unit, determine the area of $DEF$.
[img]https://cdn.artofproblemsolving.com/attachments/c/0/6e1a303a45fa89576e26bc8fd30ce6564aaad1.png[/img]
[b]p3.[/b] Consider a symmetric triangular set of points as shown (every point lies a distance of one unit from each of its neighbors). A collection of $m$ lines has the property that for every point in the arrangement, there is at least one line in the collection that passes through that point. Prove or disprove that $m \ge 10$.
[img]https://cdn.artofproblemsolving.com/attachments/0/9/540f2781312f86672df1578bfe4f68b51d3b2c.png[/img]
[b]p4.[/b] Let $P$ be a convex polygon drawn on graph paper (defined as the grid of all lines with equations $x = a$ and $y = b$, with $a$ and $b$ integers). We know that all the vertices of $P$ are at the intersections of grid lines and none of its sides is parallel to a grid line. Let $H$ be the sum of the lengths of the horizontal segments of the grid which are contained in the interior of $P$, and let $V$ be the sum of the lengths of the vertical segments of the grid in the interior of $P$. Prove that $H = V$ .
[b]p5.[/b] Peter, Paul, and Mary play the following game. Given a fixed positive integer $k$ which is at most $2013$, they randomly choose a subset $A$ of $\{1, 2,..., 2013\}$ with $k$ elements. The winner is Peter, Paul, or Mary, respectively, if the sum of the numbers in $A$ leaves a remainder of $0$, $1$, or $2$ when divided by $3$. Determine the values of $k$ for which this game is fair (i.e., such that the three possible outcomes are equally likely).
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2017 Baltic Way, 18
Let $p>3$ be a prime and let $a_1,a_2,...,a_{\frac{p-1}{2}}$ be a permutation of $1,2,...,\frac{p-1}{2}$. For which $p$ is it always possible to determine the sequence $a_1,a_2,...,a_{\frac{p-1}{2}}$ if it for all $i,j\in\{1,2,...,\frac{p-1}{2}\}$ with $i\not=j$ the residue of $a_ia_j$ modulo $p$ is known?
2017 Princeton University Math Competition, 10
Given a positive integer $x \le 233$, let $a$ be the remainder when $x^{1943}$ is divided by $233$.
Find the sum of all possible values of $a$.