This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2009 India Regional Mathematical Olympiad, 6

In a book with page numbers from $ 1$ to $ 100$ some pages are torn off. The sum of the numbers on the remaining pages is $ 4949$. How many pages are torn off?

2012 Turkey Team Selection Test, 3

Let $\mathbb{Z^+}$ and $\mathbb{P}$ denote the set of positive integers and the set of prime numbers, respectively. A set $A$ is called $S-\text{proper}$ where $A, S \subset \mathbb{Z^+}$ if there exists a positive integer $N$ such that for all $a \in A$ and for all $0 \leq b <a$ there exist $s_1, s_2, \ldots, s_n \in S$ satisfying $ b \equiv s_1+s_2+\cdots+s_n \pmod a$ and $1 \leq n \leq N.$ Find a subset $S$ of $\mathbb{Z^+}$ for which $\mathbb{P}$ is $S-\text{proper}$ but $\mathbb{Z^+}$ is not.

VI Soros Olympiad 1999 - 2000 (Russia), grade7

[b]p1.[/b] Cities A, B, C, D and E are located next to each other along the highway at a distance of $5$ km from each other. The bus runs along the highway from city A to city E and back. The bus consumes $20$ liters of gasoline for every $100$ kilometers. In which city will a bus run out of gas if it initially had $150$ liters of gasoline in its tank? [b]p2.[/b] Find the minimum four-digit number whose product of all digits is $729$. Explain your answer. [b]p3.[/b] At the parade, soldiers are lined up in two lines of equal length, and in the first line the distance between adjacent soldiers is $ 20\%$ greater than in the second (there is the same distance between adjacent soldiers in the same line). How many soldiers are in the first rank if there are $85$ soldiers in the second rank? [b]p4.[/b] It is known about three numbers that the sum of any two of them is not less than twice the third number, and the sum of all three is equal to $300$. Find all triplets of such (not necessarily integer) numbers. [b]p5.[/b] The tourist fills two tanks of water using two hoses. $2.9$ liters of water flow out per minute from the first hose, $8.7$ liters from the second. At that moment, when the smaller tank was half full, the tourist swapped the hoses, after which both tanks filled at the same time. What is the capacity of the larger tank if the capacity of the smaller one is $12.5$ liters? [b]p6.[/b] Is it possible to mark 6 points on a plane and connect them with non-intersecting segments (with ends at these points) so that exactly four segments come out of each point? [b]p7.[/b] Petya wrote all the natural numbers from $1$ to $1000$ and circled those that are represented as the difference of the squares of two integers. Among the circled numbers, which numbers are more even or odd? [b]p8.[/b] On a sheet of checkered paper, draw a circle of maximum radius that intersects the grid lines only at the nodes. Explain your answer. [b]p9.[/b] Along the railway there are kilometer posts at a distance of $1$ km from each other. One of them was painted yellow and six were painted red. The sum of the distances from the yellow pillar to all the red ones is $14$ km. What is the maximum distance between the red pillars? [b]p10.[/b] The island nation is located on $100$ islands connected by bridges, with some islands also connected to the mainland by a bridge. It is known that from each island you can travel to each (possibly through other islands). In order to improve traffic safety, one-way traffic was introduced on all bridges. It turned out that from each island you can leave only one bridge and that from at least one of the islands you can go to the mainland. Prove that from each island you can get to the mainland, and along a single route. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c2416727_soros_olympiad_in_mathematics]here.[/url]

2015 Hanoi Open Mathematics Competitions, 5

Let $a,b,c$ and $m$ ($0 \le m \le 26$) be integers such that $a + b + c = (a - b)(b- c)(c - a) = m$ (mod $27$) then $m$ is (A): $0$, (B): $1$, (C): $25$, (D): $26$ (E): None of the above.

Kvant 2019, M2552

Let $a_1,a_2, \cdots$ be a sequence of integers that satisfies: $a_1=1$ and $a_{n+1}=a_n+a_{\lfloor \sqrt{n} \rfloor} , \forall n\geq 1 $. Prove that for all positive $k$, there is $m \geq 1$ such that $k \mid a_m$.

2016 BMT Spring, 18

Define $r_n$ to be the number of integer solutions to $x^2+y^2 = n$. Determine $\lim_{n\to \infty}\frac{r_1 + r_2+... + r_n}{n}$ .

2022 Iran Team Selection Test, 2

For a positive integer $n$, let $\tau(n)$ and $\sigma(n)$ be the number of positive divisors of $n$ and the sum of positive divisors of $n$, respectively. let $a$ and $b$ be positive integers such that $\sigma(a^n)$ divides $\sigma(b^n)$ for all $n\in \mathbb{N}$. Prove that each prime factor of $\tau(a)$ divides $\tau(b)$. Proposed by MohammadAmin Sharifi

2021-IMOC, N3

Define the function $f:\mathbb N_{>1}\to\mathbb N_{>1}$ such that $f(x)$ is the greatest prime factor of $x$. A sequence of positive integers $\{a_n\}$ satisfies $a_1=M>1$ and $$a_{n+1}=\begin{cases}a_n-f(a_n)&\text{if }a_n\text{ is composite.}\\a_n+k&\text{otherwise.}\end{cases}$$ Show that for any positive integers $M,k$, the sequence $\{a_n\}$ is bounded. (TAN768092100853)

2013 Princeton University Math Competition, 3

Find the smallest positive integer $x$ such that [list] [*] $x$ is $1$ more than a multiple of $3$, [*] $x$ is $3$ more than a multiple of $5$, [*] $x$ is $5$ more than a multiple of $7$, [*] $x$ is $9$ more than a multiple of $11$, and [*] $x$ is $2$ more than a multiple of $13$.[/list]

1981 Romania Team Selection Tests, 3.

Let $p>2$ be a prime number, and $(a_k)_{k\geqslant 1}$ be a sequence defined by $a_1=p$ and $a_{k+1}=2a_k+1$, $k\geqslant 1$. Show that one of the first $p$ terms of the sequence is not prime. [i]Marcel Čšena[/i]

2019 China Team Selection Test, 6

Given positive integer $n,k$ such that $2 \le n <2^k$. Prove that there exist a subset $A$ of $\{0,1,\cdots,n\}$ such that for any $x \neq y \in A$, ${y\choose x}$ is even, and $$|A| \ge \frac{{k\choose \lfloor \frac{k}{2} \rfloor}}{2^k} \cdot (n+1)$$

2018 SIMO, Bonus

Anana has an ordered $n$-tuple $(a_1,a_2,...,a_n)$ if integers. Banana may make a guess on Anana's ordered integer $n$-tuple $(x_1,x_2,...,x_n)$, upon which Anana will reveal the product of differences $(a_1-x_1)(a_2-x_2)...(a_n-x_n)$. How many guesses does Banana need to figure out Anana's $n$-tuple for certain?

1958 Poland - Second Round, 1

Prove that if $ a $ is an integer different from $ 1 $ and $ - 1 $, then $ a^4 + 4 $ is not a prime number.

2001 IMO, 6

Let $a > b > c > d$ be positive integers and suppose that \[ ac + bd = (b+d+a-c)(b+d-a+c). \] Prove that $ab + cd$ is not prime.

2018 Malaysia National Olympiad, B1

Given two triangles with the same perimeter. Both triangles have integer side lengths. The first triangle is an equilateral triangle. The second triangle has a side with length 1 and a side with length $d$. Prove that when $d$ is divided by 3, the remainder is 1.

the 14th XMO, P2

Let $p$ be a prime. Define $f_n(k)$ to be the number of positive integers $1\leq x\leq p-1$ such that $$\left(\left\{\frac{x}{p}\right\}-\left\{\frac{k}{p}\right\}\right)\left(\left\{\frac{nx}{p}\right\}-\left\{\frac{k}{p}\right\}\right)<0.$$ Let $a_n=f_n\left(\frac 12\right)+f_n\left(\frac 32\right)+\dots+f_n\left(\frac{2p-1}{2}\right)$, find $\min\{a_2, a_3, \dots, a_{p-1}\}$.

2018 China Team Selection Test, 5

Given a positive integer $k$, call $n$ [i]good[/i] if among $$\binom{n}{0},\binom{n}{1},\binom{n}{2},...,\binom{n}{n}$$ at least $0.99n$ of them are divisible by $k$. Show that exists some positive integer $N$ such that among $1,2,...,N$, there are at least $0.99N$ good numbers.

2016 Junior Balkan Team Selection Tests - Romania, 3

Let $n$ be an integer greater than $2$ and consider the set \begin{align*} A = \{2^n-1,3^n-1,\dots,(n-1)^n-1\}. \end{align*} Given that $n$ does not divide any element of $A$, prove that $n$ is a square-free number. Does it necessarily follow that $n$ is a prime?

1990 IMO Longlists, 39

Let $a, b, c$ be integers. Prove that there exist integers $p_1, q_1, r_1, p_2, q_2$ and $r_2$, satisfying $a = q_1r_2 - q_2r_1, b = r_1p_2 - r_2p_1$ and $c = p_1q_2 - p_2q_1.$

2001 China National Olympiad, 1

Let $a,b,c$ be positive integers such that $a,b,c,a+b-c,a+c-b,b+c-a,a+b+c$ are $7$ distinct primes. The sum of two of $a,b,c$ is $800$. If $d$ be the difference of the largest prime and the least prime among those $7$ primes, find the maximum value of $d$.

2019 USAMO, 5

Two rational numbers \(\tfrac{m}{n}\) and \(\tfrac{n}{m}\) are written on a blackboard, where \(m\) and \(n\) are relatively prime positive integers. At any point, Evan may pick two of the numbers \(x\) and \(y\) written on the board and write either their arithmetic mean \(\tfrac{x+y}{2}\) or their harmonic mean \(\tfrac{2xy}{x+y}\) on the board as well. Find all pairs \((m,n)\) such that Evan can write 1 on the board in finitely many steps. [i]Proposed by Yannick Yao[/i]

2010 Philippine MO, 1

Find all primes that can be written both as a sum of two primes and as a difference of two primes.

1997 All-Russian Olympiad Regional Round, 8.6

The numbers from 1 to 37 are written in a line so that the sum of any first several numbers is divided by the number following them. What number is worth in third place, if the number 37 is written in the first place, and in the second, 1?

2003 District Olympiad, 1

Find the disjoint sets $B$ and $C$ such that $B \cup C = \{1,2,..., 10\}$ and the product of the elements of $C$ equals the sum of elements of $B$.

2009 Belarus Team Selection Test, 1

Denote by $\phi(n)$ for all $n\in\mathbb{N}$ the number of positive integer smaller than $n$ and relatively prime to $n$. Also, denote by $\omega(n)$ for all $n\in\mathbb{N}$ the number of prime divisors of $n$. Given that $\phi(n)|n-1$ and $\omega(n)\leq 3$. Prove that $n$ is a prime number.