Found problems: 15460
2022 Dutch IMO TST, 1
Find all quadruples $(a, b, c, d)$ of non-negative integers such that $ab =2(1 + cd)$ and there exists a non-degenerate triangle with sides of length $a - c$, $b - d$, and $c + d$.
1987 All Soviet Union Mathematical Olympiad, 459
The $T_0$ set consists of all the numbers, representable as $(2k)!, k = 0, 1, 2, ... , n, ...$. The $T_m$ set is obtained from $T_{m-1}$ by adding all the finite sums of different numbers, that belong to $T_{m-1}$. Prove that there is a natural number, that doesn't belong to $T_{1987}$.
2021 SYMO, Q3
Let $a_1,a_2,a_3,\dots$ be an infinite sequence of non-zero reals satisfying \[a_{i} = \frac{a_{i-1}a_{i-2}-2}{a_{i-3}}\]for all $i\geq 4$. Determine all positive integers $n$ such that if $a_1,a_2,\dots,a_n$ are integers, then all elements of the sequence are integers.
2013 ELMO Shortlist, 6
Let $\mathbb N$ denote the set of positive integers, and for a function $f$, let $f^k(n)$ denote the function $f$ applied $k$ times. Call a function $f : \mathbb N \to \mathbb N$ [i]saturated[/i] if \[ f^{f^{f(n)}(n)}(n) = n \] for every positive integer $n$. Find all positive integers $m$ for which the following holds: every saturated function $f$ satisfies $f^{2014}(m) = m$.
[i]Proposed by Evan Chen[/i]
2020 Regional Olympiad of Mexico West, 4
Given a positive integer \( n \), we denote by \( P(n) \) the result of multiplying all the digits of \( n \). Find a number \( m \) with ten digits, none of them zero, with the following property: $$P\left(m+P(m)\right)= P (m)$$
2019 May Olympiad, 3
Gus has to make a list of $250$ positive integers, not necessarily distinct, such that each number is equal to the number of numbers in the list that are different from it. For example, if $15$ is a number from the list so the list contains $15$ numbers other than $15$. Determine the maximum number of distinct numbers the Gus list can contain.
DMM Team Rounds, 2015
[b]p1.[/b] Let $U = \{-2, 0, 1\}$ and $N = \{1, 2, 3, 4, 5\}$. Let $f$ be a function that maps $U$ to $N$. For any $x \in U$, $x + f(x) + xf(x)$ is an odd number. How many $f$ satisfy the above statement?
[b]p2.[/b] Around a circle are written all of the positive integers from $ 1$ to $n$, $n \ge 2$ in such a way that any two adjacent integers have at least one digit in common in their decimal expressions. Find the smallest $n$ for which this is possible.
[b]p3.[/b] Michael loses things, especially his room key. If in a day of the week he has $n$ classes he loses his key with probability $n/5$. After he loses his key during the day he replaces it before he goes to sleep so the next day he will have a key. During the weekend(Saturday and Sunday) Michael studies all day and does not leave his room, therefore he does not lose his key. Given that on Monday he has 1 class, on Tuesday and Thursday he has $2$ classes and that on Wednesday and Friday he has $3$ classes, what is the probability that loses his key at least once during a week?
[b]p4.[/b] Given two concentric circles one with radius $8$ and the other $5$. What is the probability that the distance between two randomly chosen points on the circles, one from each circle, is greater than $7$ ?
[b]p5.[/b] We say that a positive integer $n$ is lucky if $n^2$ can be written as the sum of $n$ consecutive positive integers. Find the number of lucky numbers strictly less than $2015$.
[b]p6.[/b] Let $A = \{3^x + 3^y + 3^z|x, y, z \ge 0, x, y, z \in Z, x < y < z\}$. Arrange the set $A$ in increasing order. Then what is the $50$th number? (Express the answer in the form $3^x + 3^y + 3^z$).
[b]p7.[/b] Justin and Oscar found $2015$ sticks on the table. I know what you are thinking, that is very curious. They decided to play a game with them. The game is, each player in turn must remove from the table some sticks, provided that the player removes at least one stick and at most half of the sticks on the table. The player who leaves just one stick on the table loses the game. Justin goes first and he realizes he has a winning strategy. How many sticks does he have to take off to guarantee that he will win?
[b]p8.[/b] Let $(x, y, z)$ with $x \ge y \ge z \ge 0$ be integers such that $\frac{x^3+y^3+z^3}{3} = xyz + 21$. Find $x$.
[b]p9.[/b] Let $p < q < r < s$ be prime numbers such that $$1 - \frac{1}{p} -\frac{1}{q} -\frac{1}{r}- \frac{1}{s}= \frac{1}{pqrs}.$$ Find $p + q + r + s$.
[b]p10.[/b] In ”island-land”, there are $10$ islands. Alex falls out of a plane onto one of the islands, with equal probability of landing on any island. That night, the Chocolate King visits Alex in his sleep and tells him that there is a mountain of chocolate on one of the islands, with equal probability of being on each island. However, Alex has become very fat from eating chocolate his whole life, so he can’t swim to any of the other islands. Luckily, there is a teleporter on each island. Each teleporter will teleport Alex to exactly one other teleporter (possibly itself) and each teleporter gets teleported to by exactly one teleporter. The configuration of the teleporters is chosen uniformly at random from all possible configurations of teleporters satisfying these criteria. What is the probability that Alex can get his chocolate?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
Mid-Michigan MO, Grades 5-6, 2013
[b]p1.[/b] The clock is $2$ hours $20$ minutes ahead of the correct time each week. The clock is set to the correct time at midnight Sunday to Monday. What time does this clock show at 6pm correct time on Thursday?
[b]p2.[/b] Five cities $A,B,C,D$, and $E$ are located along the straight road in the alphabetical order. The sum of distances from $B$ to $A,C,D$ and $E$ is $20$ miles. The sum of distances from $C$ to the other four cities is $18$ miles. Find the distance between $B$ and $C$.
[b]p3.[/b] Does there exist distinct digits $a, b, c$, and $d$ such that $\overline{abc}+\overline{c} = \overline{bda}$?
Here $\overline{abc}$ means the three digit number with digits $a, b$, and $c$.
[b]p4.[/b] Kuzya, Fyokla, Dunya, and Senya participated in a mathematical competition. Kuzya solved $8$ problems, more than anybody else. Senya solved $5$ problem, less than anybody else. Each problem was solved by exactly $3$ participants. How many problems were there?
[b]p5.[/b] Mr Mouse got to the cellar where he noticed three heads of cheese weighing $50$ grams, $80$ grams, and $120$ grams. Mr. Mouse is allowed to cut simultaneously $10$ grams from any two of the heads and eat them. He can repeat this procedure as many times as he wants. Can he make the weights of all three pieces equal?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
EMCC Guts Rounds, 2015
[u]Round 1[/u]
[b]p1.[/b] Alec rated the movie Frozen $1$ out of $5$ stars. At least how many ratings of $5$ out of $5$ stars does Eric need to collect to make the average rating for Frozen greater than or equal to $4$ out of $5$ stars?
[b]p2.[/b] Bessie shuffles a standard $52$-card deck and draws five cards without replacement. She notices that all five of the cards she drew are red. If she draws one more card from the remaining cards in the deck, what is the probability that she draws another red card?
[b]p3.[/b] Find the value of $121 \cdot 1020304030201$.
[u]Round 2[/u]
[b]p4.[/b] Find the smallest positive integer $c$ for which there exist positive integers $a$ and $b$ such that $a \ne b$ and $a^2 + b^2 = c$
[b]p5.[/b] A semicircle with diameter $AB$ is constructed on the outside of rectangle $ABCD$ and has an arc length equal to the length of $BC$. Compute the ratio of the area of the rectangle to the area of the semicircle.
[b]p6.[/b] There are $10$ monsters, each with $6$ units of health. On turn $n$, you can attack one monster, reducing its health by $n$ units. If a monster's health drops to $0$ or below, the monster dies. What is the minimum number of turns necessary to kill all of the monsters?
[u]Round 3[/u]
[b]p7.[/b] It is known that $2$ students make up $5\%$ of a class, when rounded to the nearest percent. Determine the number of possible class sizes.
[b]p8.[/b] At $17:10$, Totoro hopped onto a train traveling from Tianjin to Urumuqi. At $14:10$ that same day, a train departed Urumuqi for Tianjin, traveling at the same speed as the $17:10$ train. If the duration of a one-way trip is $13$ hours, then how many hours after the two trains pass each other would Totoro reach Urumuqi?
[b]p9.[/b] Chad has $100$ cookies that he wants to distribute among four friends. Two of them, Jeff and Qiao, are rivals; neither wants the other to receive more cookies than they do. The other two, Jim and Townley, don't care about how many cookies they receive. In how many ways can Chad distribute all $100$ cookies to his four friends so that everyone is satisfied? (Some of his four friends may receive zero cookies.)
[u]Round 4[/u]
[b]p10.[/b] Compute the smallest positive integer with at least four two-digit positive divisors.
[b]p11.[/b] Let $ABCD$ be a trapezoid such that $AB$ is parallel to $CD$, $BC = 10$ and $AD = 18$. Given that the two circles with diameters $BC$ and $AD$ are tangent, find the perimeter of $ABCD$.
[b]p12.[/b] How many length ten strings consisting of only $A$s and Bs contain neither "$BAB$" nor "$BBB$" as a substring?
PS. You should use hide for answers. Rounds 5-8 have been posted [url=https://artofproblemsolving.com/community/c3h2934037p26256063]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2015 European Mathematical Cup, 1
We are given an $n \times n$ board. Rows are labeled with numbers $1$ to $n$ downwards and columns are labeled with numbers $1$ to $n$ from left to right. On each field we write the number $x^2 + y^2$ where $(x, y)$ are its coordinates. We are given a figure and can initially place it on any field. In every step we can move the figure from one field to another if the other field has not already been visited and if at least one of the following
conditions is satisfied:[list]
[*] the numbers in those $2$ fields give the same remainders when divided by $n$,
[*] those fields are point reflected with respect to the center of the board.[/list]Can all the fields be visited in case:
[list=a][*] $n = 4$,
[*] $n = 5$?[/list]
[i]Josip Pupić[/i]
2011 China National Olympiad, 3
Let $m,n$ be positive integer numbers. Prove that there exist infinite many couples of positive integer nubmers $(a,b)$ such that
\[a+b| am^a+bn^b , \quad\gcd(a,b)=1.\]
2025 Taiwan TST Round 1, N
Find all positive integers $n$ such that there exist two permutations $a_0,a_1,\ldots,a_{n-1}$ and $b_0,b_1,\ldots,b_{n-1}$ of the set $\lbrace0,1,\ldots,n-1\rbrace$, satisfying the condition
$$ia_i\equiv b_i\pmod{n}$$
for all $0\le i\le n-1$.
[i]Proposed by Fysty[/i]
2022 VIASM Summer Challenge, Problem 1
Given prime numbers $p$ and $q.$
a) Assume that $2^xq=p^y+1,$ with $x,y$ are integers greater than $1$. Can $x$ be a composite number?
b) Assume that $2^uq=p^v-1,$ with $u$ is a prime number and $v$ is an integer greater than $1$. Find all possible values of $p.$
2022 Kyiv City MO Round 2, Problem 4
Prime $p>2$ and a polynomial $Q$ with integer coefficients are such that there are no integers $1 \le i < j \le p-1$ for which $(Q(j)-Q(i))(jQ(j)-iQ(i))$ is divisible by $p$. What is the smallest possible degree of $Q$?
[i](Proposed by Anton Trygub)[/i]
2001 Moldova National Olympiad, Problem 5
Prove that the sum of the numbers $1,2,\ldots,n$ divides their product if and only if $n+1$ is a composite number.
2023 India IMO Training Camp, 2
For a positive integer $k$, let $s(k)$ denote the sum of the digits of $k$. Show that there are infinitely many natural numbers $n$ such that $s(2^n) > s(2^{n+1})$.
2000 Irish Math Olympiad, 3
Let $ f(x)\equal{}5x^{13}\plus{}13x^5\plus{}9ax$. Find the least positive integer $ a$ such that $ 65$ divides $ f(x)$ for every integer $ x$.
1969 Leningrad Math Olympiad, grade 7
[b]7.1 / 6.1[/b] There are $8$ rooks on the chessboard such that no two of them they don't hit each other. Prove that the black squares contain an even number of rooks.
[b]7.2[/b] The sides of triangle $ABC$ are extended as shown in the figure. At this $AA' = 3 AB$,, $BB' = 5BC$ , $CC'= 8 CA$. How many times is the area of the triangle $ABC$ less than the area of the triangle $A'B'C' $?
[img]https://cdn.artofproblemsolving.com/attachments/9/f/06795292291cd234bf2469e8311f55897552f6.png[/img]
[url=https://artofproblemsolving.com/community/c893771h1860178p12579333]7.3[/url] Prove the equality $$\frac{2}{x^2-1}+\frac{4}{x^2-4} +\frac{6}{x^2-9}+...+\frac{20}{x^2-100}
=\frac{11}{(x-1)(x+10)}+\frac{11}{(x-2)(x+9)}+...+\frac{11}{(x-10)(x+1)}$$
[url=https://artofproblemsolving.com/community/c893771h1861966p12597273]7.4* / 8.4 *[/url] (asterisk problems in separate posts)
[b]7.5 [/b]. The collective farm consists of $4$ villages located in the peaks of square with side $10$ km. It has the means to conctruct 28 kilometers of roads . Can a collective farm build such a road system so that was it possible to get from any village to any other?
[b]7.6 / 6.6[/b] Two brilliant mathematicians were told in natural terms number and were told that these numbers differ by one. After that they take turns asking each other the same question: “Do you know my number?" Prove that sooner or later one of them will answer positively.
PS. You should use hide for answers.Collected [url=https://artofproblemsolving.com/community/c3988085_1969_leningrad_math_olympiad]here[/url].
2013 Chile TST Ibero, 2
Let $a \in \mathbb{N}$ such that $a + n^2$ can be expressed as the sum of two squares for all $n \in \mathbb{N}$. Prove that $a$ is the square of a natural number.
2016 Macedonia JBMO TST, 1
Solve the following equation in the set of integers
$x_{1}^4 + x_{2}^4 +...+ x_{14}^4=2016^3 - 1$.
1957 Miklós Schweitzer, 8
[b]8.[/b] Find all integers $a>1$ for which the least (integer) solution $n$ of the congruence $a^{n} \equiv 1 \pmod{p}$ differs from 6 (p is any prime number). [b](N. 9)[/b]
1999 IberoAmerican, 1
Find all the positive integers less than 1000 such that the cube of the sum of its digits is equal to the square of such integer.
2016 Junior Balkan Team Selection Tests - Moldova, 1
$\frac{a^3}{b^3}$+$\frac{a^3+1}{b^3+1}$+...+$\frac{a^3+2015}{b^3+2015}$=2016
b - positive integer, b can't be 0
a - real
Find $\frac{a^3}{b^3}$*$\frac{a^3+1}{b^3+1}$*...*$\frac{a^3+2015}{b^3+2015}$
2017 Cono Sur Olympiad, 1
A positive integer $n$ is called [i]guayaquilean[/i] if the sum of the digits of $n$ is equal to the sum of the digits of $n^2$. Find all the possible values that the sum of the digits of a guayaquilean number can take.
2006 Iran Team Selection Test, 1
Suppose that $p$ is a prime number.
Find all natural numbers $n$ such that $p|\varphi(n)$ and for all $a$ such that $(a,n)=1$ we have
\[ n|a^{\frac{\varphi(n)}{p}}-1 \]