This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2016 Bundeswettbewerb Mathematik, 2

Prove that there are infinitely many positive integers that cannot be expressed as the sum of a triangular number and a prime number.

The Golden Digits 2024, P2

Find all the functions $\varphi:\mathbb{Z}[x]\to\mathbb{Z}[x]$ such that $\varphi(x)=x,$ any integer polynomials $f, g$ satisfy $\varphi(f+g)=\varphi(f)+\varphi(g)$ and $\varphi(f)$ is a perfect power if and only if $f{}$ is a perfect power. [i]Note:[/i] A polynomial $f\in \mathbb{Z}[x]$ is a perfect power if $f = g^n$ for some $g\in \mathbb{Z}[x]$ and $n\geqslant 2.$ [i]Proposed by Pavel Ciurea[/i]

2018 PUMaC Number Theory A, 3

What is the largest integer $n < 2018$ such that for all integers $b > 1$, $n$ has at least as many $1$'s in its base-$4$ representation as it has in its base-$b$ representation?

2015 Caucasus Mathematical Olympiad, 4

Is there a nine-digit number without zero digits, the remainder of dividing which on each of its digits is different?

2021 CCA Math Bonanza, I3

How many reorderings of $2,3,4,5,6$ have the property that every pair of adjacent numbers are relatively prime? [i]2021 CCA Math Bonanza Individual Round #3[/i]

2013 BMT Spring, 16

Find the sum of all possible $n$ such that $n$ is a positive integer and there exist $a, b, c$ real numbers such that for every integer $m$, the quantity $\frac{2013m^3 + am^2 + bm + c}{n}$ is an integer.

1999 All-Russian Olympiad, 1

The decimal digits of a natural number $A$ form an increasing sequence (from left to right). Find the sum of the digits of $9A$.

2023 Bangladesh Mathematical Olympiad, P3

Solve the equation for the positive integers: $$(x+2y)^2+2x+5y+9=(y+z)^2$$

2009 Portugal MO, 1

A circumference was divided in $n$ equal parts. On each of these parts one number from $1$ to $n$ was placed such that the distance between consecutive numbers is always the same. Numbers $11$, $4$ and $17$ were in consecutive positions. In how many parts was the circumference divided?

2007 Estonia Math Open Senior Contests, 4

The Fibonacci sequence is determined by conditions $ F_0 \equal{} 0, F1 \equal{} 1$, and $ F_k\equal{}F_{k\minus{}1}\plus{}F_{k\minus{}2}$ for all $ k \ge 2$. Let $ n$ be a positive integer and let $ P(x) \equal{} a_mx^m \plus{}. . .\plus{} a_1x\plus{} a_0$ be a polynomial that satisfies the following two conditions: (1) $ P(F_n) \equal{} F_{n}^{2}$ ; (2) $ P(F_k) \equal{} P(F_{k\minus{}1}) \plus{} P(F_{k\minus{}2}$ for all $ k \ge 2$. Find the sum of the coefficients of P.

2013 Olympic Revenge, 4

Find all triples $(p,n,k)$ of positive integers, where $p$ is a Fermat's Prime, satisfying \[p^n + n = (n+1)^k\]. [i]Observation: a Fermat's Prime is a prime number of the form $2^{\alpha} + 1$, for $\alpha$ positive integer.[/i]

2004 Greece Junior Math Olympiad, 1

The numbers $203$ and $298$ divided with the positive integer $x$ give both remainder $13$. Which are the possible values of $x$ ?

2011 Postal Coaching, 6

A positive integer is called [i]monotonic[/i] if when written in base $10$, the digits are weakly increasing. Thus $12226778$ is monotonic. Note that a positive integer cannot have first digit $0$. Prove that for every positive integer $n$, there is an $n$-digit monotonic number which is a perfect square.

2013 Dutch Mathematical Olympiad, 5

Tags: number theory , sum , digit
The number $S$ is the result of the following sum: $1 + 10 + 19 + 28 + 37 +...+ 10^{2013}$ If one writes down the number $S$, how often does the digit `$5$' occur in the result?

EMCC Team Rounds, 2017

[b]p1.[/b] Compute $2017 + 7201 + 1720 + 172$. [b]p2. [/b]A number is called [i]downhill [/i]if its digits are distinct and in descending order. (For example, $653$ and $8762$ are downhill numbers, but $97721$ is not.) What is the smallest downhill number greater than 86432? [b]p3.[/b] Each vertex of a unit cube is sliced off by a planar cut passing through the midpoints of the three edges containing that vertex. What is the ratio of the number of edges to the number of faces of the resulting solid? [b]p4.[/b] In a square with side length $5$, the four points that divide each side into five equal segments are marked. Including the vertices, there are $20$ marked points in total on the boundary of the square. A pair of distinct points $A$ and $B$ are chosen randomly among the $20$ points. Compute the probability that $AB = 5$. [b]p5.[/b] A positive two-digit integer is one less than five times the sum of its digits. Find the sum of all possible such integers. [b]p6.[/b] Let $$f(x) = 5^{4^{3^{2^{x}}}}.$$ Determine the greatest possible value of $L$ such that $f(x) > L$ for all real numbers $x$. [b]p7.[/b] If $\overline{AAAA}+\overline{BB} = \overline{ABCD}$ for some distinct base-$10$ digits $A, B, C, D$ that are consecutive in some order, determine the value of $ABCD$. (The notation $\overline{ABCD}$ refers to the four-digit integer with thousands digit $A$, hundreds digit $B$, tens digit $C$, and units digit $D$.) [b]p8.[/b] A regular tetrahedron and a cube share an inscribed sphere. What is the ratio of the volume of the tetrahedron to the volume of the cube? [b]p9.[/b] Define $\lfloor x \rfloor$ as the greatest integer less than or equal to x, and ${x} = x - \lfloor x \rfloor$ as the fractional part of $x$. If $\lfloor x^2 \rfloor =2 \lfloor x \rfloor$ and $\{x^2\} =\frac12 \{x\}$, determine all possible values of $x$. [b]p10.[/b] Find the largest integer $N > 1$ such that it is impossible to divide an equilateral triangle of side length $ 1$ into $N$ smaller equilateral triangles (of possibly different sizes). [b]p11.[/b] Let $f$ and $g$ be two quadratic polynomials. Suppose that $f$ has zeroes $2$ and $7$, $g$ has zeroes $1$ and $ 8$, and $f - g$ has zeroes $4$ and $5$. What is the product of the zeroes of the polynomial $f + g$? [b]p12.[/b] In square $PQRS$, points $A, B, C, D, E$, and $F$ are chosen on segments $PQ$, $QR$, $PR$, $RS$, $SP$, and $PR$, respectively, such that $ABCDEF$ is a regular hexagon. Find the ratio of the area of $ABCDEF$ to the area of $PQRS$. [b]p13.[/b] For positive integers $m$ and $n$, define $f(m, n)$ to be the number of ways to distribute $m$ identical candies to $n$ distinct children so that the number of candies that any two children receive differ by at most $1$. Find the number of positive integers n satisfying the equation $f(2017, n) = f(7102, n)$. [b]p14.[/b] Suppose that real numbers $x$ and $y$ satisfy the equation $$x^4 + 2x^2y^2 + y^4 - 2x^2 + 32xy - 2y^2 + 49 = 0.$$ Find the maximum possible value of $\frac{y}{x}$. [b]p15.[/b] A point $P$ lies inside equilateral triangle $ABC$. Let $A'$, $B'$, $C'$ be the feet of the perpendiculars from $P$ to $BC, AC, AB$, respectively. Suppose that $PA = 13$, $PB = 14$, and $PC = 15$. Find the area of $A'B'C'$. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2013 Tournament of Towns, 1

Several positive integers are written on a blackboard. The sum of any two of them is some power of two (for example, $2, 4, 8,...$). What is the maximal possible number of different integers on the blackboard?

2024 Philippine Math Olympiad, P6

The sequence $\{a_n\}_{n\ge 1}$ of real numbers is defined as follows: $$a_1=1, \quad \text{and}\quad a_{n+1}=\frac{1}{2\lfloor a_n \rfloor -a_n+1} \quad \text{for all} \quad n\ge 1$$ Find $a_{2024}$.

2010 Contests, 1

Each of six fruit baskets contains pears, plums and apples. The number of plums in each basket equals the total number of apples in all other baskets combined while the number of apples in each basket equals the total number of pears in all other baskets combined. Prove that the total number of fruits is a multiple of $31$.

DMM Devil Rounds, 2011

[u]Round 1[/u] [b]p1.[/b] The fractal T-shirt for this year's Duke Math Meet is so complicated that the printer broke trying to print it. Thus, we devised a method for manually assembling each shirt - starting with the full-size 'base' shirt, we paste a smaller shirt on top of it. And then we paste an even smaller shirt on top of that one. And so on, infinitely many times. (As you can imagine, it took a while to make all the shirts.) The completed T-shirt consists of the original 'base' shirt along with all of the shirts we pasted onto it. Now suppose the base shirt requires $2011$ $cm^2$ of fabric to make, and that each pasted-on shirt requires $4/5$ as much fabric as the previous one did. How many $cm^2$ of fabric in total are required to make one complete shirt? [b]p2.[/b] A dog is allowed to roam a yard while attached to a $60$-meter leash. The leash is anchored to a $40$-meter by $20$-meter rectangular house at the midpoint of one of the long sides of the house. What is the total area of the yard that the dog can roam? [b]p3.[/b] $10$ birds are chirping on a telephone wire. Bird $1$ chirps once per second, bird $2$ chirps once every $2$ seconds, and so on through bird $10$, which chirps every $10$ seconds. At time $t = 0$, each bird chirps. Define $f(t)$ to be the number of birds that chirp during the $t^{th}$ second. What is the smallest $t > 0$ such that $f(t)$ and $f(t + 1)$ are both at least $4$? [u]Round 2[/u] [b]p4.[/b] The answer to this problem is $3$ times the answer to problem 5 minus $4$ times the answer to problem 6 plus $1$. [b]p5.[/b] The answer to this problem is the answer to problem 4 minus $4$ times the answer to problem 6 minus $1$. [b]p6.[/b] The answer to this problem is the answer to problem 4 minus $2$ times the answer to problem 5. [u]Round 3[/u] [b]p7.[/b] Vivek and Daniel are playing a game. The game ends when one person wins $5$ rounds. The probability that either wins the first round is $1/2$. In each subsequent round the players have a probability of winning equal to the fraction of games that the player has lost. What is the probability that Vivek wins in six rounds? [b]p8.[/b] What is the coefficient of $x^8y^7$ in $(1 + x^2 - 3xy + y^2)^{17}$? [b]p9.[/b] Let $U(k)$ be the set of complex numbers $z$ such that $z^k = 1$. How many distinct elements are in the union of $U(1),U(2),...,U(10)$? [u]Round 4[/u] [b]p10.[/b] Evaluate $29 {30 \choose 0}+28{30 \choose 1}+27{30 \choose 2}+...+0{30 \choose 29}-{30\choose 30}$. You may leave your answer in exponential format. [b]p11.[/b] What is the number of strings consisting of $2a$s, $3b$s and $4c$s such that $a$ is not immediately followed by $b$, $b$ is not immediately followed by $c$ and $c$ is not immediately followed by $a$? [b]p12.[/b] Compute $\left(\sqrt3 + \tan (1^o)\right)\left(\sqrt3 + \tan (2^o)\right)...\left(\sqrt3 + \tan (29^o)\right)$. [u]Round 5[/u] [b]p13.[/b] Three massless legs are randomly nailed to the perimeter of a massive circular wooden table with uniform density. What is the probability that the table will not fall over when it is set on its legs? [b]p14.[/b] Compute $$\sum^{2011}_{n=1}\frac{n + 4}{n(n + 1)(n + 2)(n + 3)}$$ [b]p15.[/b] Find a polynomial in two variables with integer coefficients whose range is the positive real numbers. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1997 Hungary-Israel Binational, 1

Is there an integer $ N$ such that $ \left(\sqrt{1997}\minus{}\sqrt{1996}\right)^{1998}\equal{}\sqrt{N}\minus{}\sqrt{N\minus{}1}$?

2023 USEMO, 1

A positive integer $n$ is called [i]beautiful[/i] if, for every integer $4 \le b \le 10000$, the base-$b$ representation of $n$ contains the consecutive digits $2$, $0$, $2$, $3$ (in this order, from left to right). Determine whether the set of all beautiful integers is finite. [i]Oleg Kryzhanovsky[/i]

2022 Princeton University Math Competition, A7

For a positive integer $n,$ let $f(n)$ be the number of integers $m$ satisfying $0 \le m \le n - 1$ such that there exists an integer solution to the congruence $x^2 \equiv m \pmod{n}.$ It is given that as $k$ goes to $\infty,$ the value of $f(225^k)/225^k$ converges to some rational number $p/q,$ where $p,q$ are relatively prime positive integers. Find $p + q.$

2017 BMT Spring, 5

How many pairs of positive integers $(a, b)$ satisfy the equation $log_a 16 = b$?

2011 Princeton University Math Competition, A5 / B8

Let $d(n)$ denote the number of divisors of $n$ (including itself). You are given that \[\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.\] Find $p(6)$, where $p(x)$ is the unique polynomial with rational coefficients satisfying \[p(\pi) = \sum_{n=1}^{\infty} \frac{d(n)}{n^2}.\]

1983 All Soviet Union Mathematical Olympiad, 367

Given $(2m+1)$ different integers, each absolute value is not greater than $(2m-1)$. Prove that it is possible to choose three numbers among them, with their sum equal to zero.