Found problems: 15460
2013 Iran MO (3rd Round), 5
$p=3k+1$ is a prime number. For each $m \in \mathbb Z_p$, define function $L$ as follow:
$L(m) = \sum_{x \in \mathbb{Z}_p}^{ } \left ( \frac{x(x^3 + m)}{p} \right )$
[i]a)[/i] For every $m \in \mathbb Z_p$ and $t \in {\mathbb Z_p}^{*}$ prove that $L(m) = L(mt^3)$. (5 points)
[i]b)[/i] Prove that there is a partition of ${\mathbb Z_p}^{*} = A \cup B \cup C$ such that $|A| = |B| = |C| = \frac{p-1}{3}$ and $L$ on each set is constant.
Equivalently there are $a,b,c$ for which $L(x) = \left\{\begin{matrix}
a & & &x \in A \\
b& & &x \in B \\
c& & & x \in C
\end{matrix}\right.$ . (7 points)
[i]c)[/i] Prove that $a+b+c = -3$. (4 points)
[i]d)[/i] Prove that $a^2 + b^2 + c^2 = 6p+3$. (12 points)
[i]e)[/i] Let $X= \frac{2a+b+3}{3},Y= \frac{b-a}{3}$, show that $X,Y \in \mathbb Z$ and also show that :$p= X^2 + XY +Y^2$. (2 points)
(${\mathbb Z_p}^{*} = \mathbb Z_p \setminus \{0\}$)
2017 Dutch IMO TST, 2
Let $n \geq 4$ be an integer. Consider a regular $2n-$gon for which to every vertex, an integer is assigned, which we call the value of said vertex. If four distinct vertices of this $2n-$gon form a rectangle, we say that the sum of the values of these vertices is a rectangular sum.
Determine for which (not necessarily positive) integers $m$ the integers $m + 1, m + 2, . . . , m + 2n$ can be assigned to the vertices (in some order) in such a way that every rectangular sum is a prime number. (Prime numbers are positive by definition.)
2014 Hanoi Open Mathematics Competitions, 10
Find all pairs of integers $(x, y)$ satisfying the condition $12x^2 + 6xy + 3y^2 = 28(x + y)$.
2014 NIMO Problems, 11
Consider real numbers $A$, $B$, \dots, $Z$ such that \[
EVIL = \frac{5}{31}, \;
LOVE = \frac{6}{29}, \text{ and }
IMO = \frac{7}{3}.
\] If $OMO = \tfrac mn$ for relatively prime positive integers $m$ and $n$, find the value of $m+n$.
[i]Proposed by Evan Chen[/i]
2023 Federal Competition For Advanced Students, P1, 4
Find all pairs of positive integers $(n, k)$ satisfying the equation $$n!+n=n^k.$$
1990 Polish MO Finals, 3
Prove that for all integers $n > 2$,
\[ 3| \sum\limits_{i=0}^{[n/3]} (-1)^i C _n ^{3i} \]
2010 Spain Mathematical Olympiad, 1
A [i]pucelana[/i] sequence is an increasing sequence of $16$ consecutive odd numbers whose sum is a perfect cube. How many pucelana sequences are there with $3$-digit numbers only?
2004 Spain Mathematical Olympiad, Problem 6
We put, forming a circumference of a circle, ${2004}$ bicolored files: white on one side of the file and black on the other. A movement consists in choosing a file with the black side upwards and flipping three files: the one chosen, the one to its right, and the one to its left. Suppose that initially there was only one file with its black side upwards. Is it possible, repeating the movement previously described, to get all of the files to have their white sides upwards? And if we were to have ${2003}$ files, between which exactly one file began with the black side upwards?
2024 Thailand October Camp, 2
Determine all ordered pairs $(a,p)$ of positive integers, with $p$ prime, such that $p^a+a^4$ is a perfect square.
[i]Proposed by Tahjib Hossain Khan, Bangladesh[/i]
2019 Iran MO (3rd Round), 1
Find all functions $f:\mathbb{N} \to \mathbb{N}$ so that for any distinct positive integers $x,y,z$ the value of $x+y+z$ is a perfect square if and only if $f(x)+f(y)+f(z)$ is a perfect square.
1999 Brazil Team Selection Test, Problem 1
For a positive integer n, let $w(n)$ denote the number of distinct prime
divisors of n. Determine the least positive integer k such that
$2^{w(n)} \leq k \sqrt[4]{n}$
for all positive integers n.
2002 Junior Balkan Team Selection Tests - Romania, 2
Find all positive integers $a, b,c,d$ such that $a + b + c + d - 3 = ab + cd$.
2016 Romania National Olympiad, 4
For $n \in N^*$ we will say that the non-negative integers $x_1, x_2, ... , x_n$ have property $(P)$ if
$$x_1x_2 ...x_n = x_1 + 2x_2 + 3x_3 + ...+ nx_n.$$
a) Show that for every $n \in N^*$ there exists $n$ positive integers with property $(P)$.
b) Find all integers $n \ge 2$ so that there exists $n$ positive integers $x_1, x_2, ... , x_n$ with $x_1< x_2<x_3< ... <x_n$, having property $(P)$.
2019 Jozsef Wildt International Math Competition, W. 1
The Pell numbers $P_n$ satisfy $P_0 = 0$, $P_1 = 1$, and $P_n=2P_{n-1}+P_{n-2}$ for $n\geq 2$. Find $$\sum \limits_{n=1}^{\infty} \left (\tan^{-1}\frac{1}{P_{2n}}+\tan^{-1}\frac{1}{P_{2n+2}}\right )\tan^{-1}\frac{2}{P_{2n+1}}$$
2008 Bulgarian Autumn Math Competition, Problem 12.4
Veni writes down finitely many real numbers (possibly one), squares them, and then subtracts 1 from each of them and gets the same set of numbers as in the beginning. What were the starting numbers?
1979 Bulgaria National Olympiad, Problem 1
Show that there are no integers $x$ and $y$ satisfying $x^2 + 5 = y^3$.
Daniel Harrer
1994 Argentina National Olympiad, 2
For what positive integer values of $x$ is $x^4 + 6x^3 + 11x^2 + 3x + 31$ a perfect square?
2014 Saint Petersburg Mathematical Olympiad, 1
Let $f(x)$ is such function, that $f(x)=1$ for integer $x$ and $f(x)=0$ for non integer $x$.
Build such function using only variable $x$, integer numbers, and operations $+,-,*,/,[.]$(plus, minus, multiply,divide and integer part)
2010 ELMO Shortlist, 5
Find the set $S$ of primes such that $p \in S$ if and only if there exists an integer $x$ such that $x^{2010} + x^{2009} + \cdots + 1 \equiv p^{2010} \pmod{p^{2011}}$.
[i]Brian Hamrick.[/i]
2007 Estonia Math Open Junior Contests, 3
Find all positive integers N with at most 4 digits such that the number obtained by reversing the order of digits of N is divisible by N and differs from N.
2014 ELMO Shortlist, 4
Let $r$ and $b$ be positive integers. The game of [i]Monis[/i], a variant of Tetris, consists of a single column of red and blue blocks. If two blocks of the same color ever touch each other, they both vanish immediately. A red block falls onto the top of the column exactly once every $r$ years, while a blue block falls exactly once every $b$ years.
(a) Suppose that $r$ and $b$ are odd, and moreover the cycles are offset in such a way that no two blocks ever fall at exactly the same time. Consider a period of $rb$ years in which the column is initially empty. Determine, in terms of $r$ and $b$, the number of blocks in the column at the end.
(b) Now suppose $r$ and $b$ are relatively prime and $r+b$ is odd. At time $t=0$, the column is initially empty. Suppose a red block falls at times $t = r, 2r, \dots, (b-1)r$ years, while a blue block falls at times $t = b, 2b, \dots, (r-1)b$ years. Prove that at time $t=rb$, the number of blocks in the column is $\left\lvert 1+2(r-1)(b+r)-8S \right\rvert$, where \[ S = \left\lfloor \frac{2r}{r+b} \right\rfloor
+ \left\lfloor \frac{4r}{r+b} \right\rfloor
+ ...
+ \left\lfloor \frac{(r+b-1)r}{r+b} \right\rfloor
. \]
[i]Proposed by Sammy Luo[/i]
2021 Pan-American Girls' Math Olympiad, Problem 1
There are $n \geq 2$ coins numbered from $1$ to $n$. These coins are placed around a circle, not necesarily in order.
In each turn, if we are on the coin numbered $i$, we will jump to the one $i$ places from it, always in a clockwise order, beginning with coin number 1. For an example, see the figure below.
Find all values of $n$ for which there exists an arrangement of the coins in which every coin will be visited.
2001 Paraguay Mathematical Olympiad, 2
Find the four smallest four-digit numbers that meet the following condition: by dividing by $2$, $3$, $4$, $5$ or $6$ the remainder is $ 1$.
2021 Azerbaijan Junior NMO, 1
At least how many numbers must be deleted from the product $1 \times 2 \times \dots \times 22 \times 23$ in order to make it a perfect square?
2007 Regional Olympiad of Mexico Center Zone, 6
Certain tickets are numbered as follows: $1, 2, 3, \dots, N $. Exactly half of the tickets have the digit $ 1$ on them. If $N$ is a three-digit number, determine all possible values of $N $.