This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 821

2005 Argentina National Olympiad, 5

Let $AM$ and $AN$ be the lines tangent to a circle $\Gamma$ drawn from a point $A$ $(M$ and $N$ belong to the circle). A line through $A$ cuts $\Gamma$ at $B$ and $C$ with $B$ between $A$ and $C$, and $\frac{AB}{BC} =\frac23$. If $P$ is the intersection point of $AB$ and $MN$, calculate $\frac{AP}{CP}$.

2015 Estonia Team Selection Test, 11

Tags: circles , geometry
Let $M$ be the midpoint of the side $AB$ of a triangle $ABC$. A circle through point $C$ that has a point of tangency to the line $AB$ at point $A$ and a circle through point $C$ that has a point of tangency to the line $AB$ at point $B$ intersect the second time at point $N$. Prove that $|CM|^2 + |CN|^2 - |MN|^2 = |CA|^2 + |CB|^2 - |AB|^2$.

2012 Switzerland - Final Round, 3

The circles $k_1$ and $k_2$ intersect at points $D$ and $P$. The common tangent of the two circles on the side of $D$ touches $k_1$ at $A$ and $k_2$ at $B$. The straight line $AD$ intersects $k_2$ for a second time at $C$. Let $M$ be the center of the segment $BC$. Show that $ \angle DPM = \angle BDC$ .

1970 Putnam, A5

Tags: circles , ellipsoid
Determine the radius of the largest circle which can lie on the ellipsoid $$\frac{x^2 }{a^2 } +\frac{ y^2 }{b^2 } +\frac{z^2 }{c^2 }=1 \;\;\;\; (a>b>c).$$

2012 Dutch BxMO/EGMO TST, 2

Let $\triangle ABC$ be a triangle and let $X$ be a point in the interior of the triangle. The second intersection points of the lines $XA,XB$ and $XC$ with the circumcircle of $\triangle ABC$ are $P,Q$ and $R$. Let $U$ be a point on the ray $XP$ (these are the points on the line $XP$ such that $P$ and $U$ lie on the same side of $X$). The line through $U$ parallel to $AB$ intersects $BQ$ in $V$ . The line through $U$ parallel to $AC$ intersects $CR$ in $W$. Prove that $Q, R, V$ , and $W$ lie on a circle.

1982 Austrian-Polish Competition, 2

Let $F$ be a closed convex region inside a circle $C$ with center $O$ and radius $1$. Furthermore, assume that from each point of $C$ one can draw two rays tangent to $F$ which form an angle of $60^o$. Prove that $F$ is the disc centered at $O$ with radius $1/2$.

2016 Saint Petersburg Mathematical Olympiad, 4

$N> 4$ points move around the circle, each with a constant speed. For Any four of them have a moment in time when they all meet. Prove that is the moment when all the points meet.

1984 IMO, 1

Let $ABCD$ be a convex quadrilateral with the line $CD$ being tangent to the circle on diameter $AB$. Prove that the line $AB$ is tangent to the circle on diameter $CD$ if and only if the lines $BC$ and $AD$ are parallel.

2006 Junior Balkan Team Selection Tests - Romania, 2

Let $C (O)$ be a circle (with center $O$ ) and $A, B$ points on the circle with $\angle AOB = 90^o$. Circles $C_1 (O_1)$ and $C_2 (O_2)$ are tangent internally with circle $C$ at $A$ and $B$, respectively, and, also, are tangent to each other. Consider another circle $C_3 (O_3)$ tangent externally to the circles $C_1, C_2$ and tangent internally to circle $C$, located inside angle $\angle AOB$. Show that the points $O, O_1, O_2, O_3$ are the vertices of a rectangle.

2002 Argentina National Olympiad, 3

In a circumference $\Gamma$ a chord $PQ$ is considered such that the segment that joins the midpoint of the smallest arc $PQ$ and the midpoint of the segment $PQ$ measures $1$. Let $\Gamma_1, \Gamma_2$ and $\Gamma_3$ be three tangent circumferences to the chord $PQ$ that are in the same half plane than the center of $\Gamma$ with respect to the line $PQ$. Furthermore, $\Gamma_1$ and $\Gamma_3$ are internally tangent to $\Gamma$ and externally tangent to$ \Gamma_2$, and the centers of $\Gamma_1$ and $\Gamma_3$ are on different halfplanes with respect to the line determined by the centers of $\Gamma$ and $\Gamma_2$. If the sum of the radii of $\Gamma_1, \Gamma_2$ and $\Gamma_3$ is equal to the radius of $\Gamma$, calculate the radius of $\Gamma_2$.

2014 IFYM, Sozopol, 6

Is it true that for each natural number $n$ there exist a circle, which contains exactly $n$ points with integer coordinates?

2012 Oral Moscow Geometry Olympiad, 5

Inside the circle with center $O$, points $A$ and $B$ are marked so that $OA = OB$. Draw a point $M$ on the circle from which the sum of the distances to points $A$ and $B$ is the smallest among all possible.

1966 IMO Longlists, 15

Given four points $A,$ $B,$ $C,$ $D$ on a circle such that $AB$ is a diameter and $CD$ is not a diameter. Show that the line joining the point of intersection of the tangents to the circle at the points $C$ and $D$ with the point of intersection of the lines $AC$ and $BD$ is perpendicular to the line $AB.$

IV Soros Olympiad 1997 - 98 (Russia), 11.7

Tags: circles , geometry
On straight line $\ell$ there are points $A$, $B$, $C$ and $D$, following in the indicated order: $AB = a$, $BC = b$, $CD = c$. Segments $AD$ and $BC$ serve as chords of two circles, and the sum of the angular values of the arcs of these circles located on one side of $\ell$ is equal to $360^o$. A third circle passes through $A$ and $B$, intersecting the first two at points $K$ and $M$. The straight line $KM$ intersects $\ell$ at point $E$. Find $AE$.

2015 Junior Balkan Team Selection Tests - Romania, 3

Let $ABC$ be an acute triangle , with $AB \neq AC$ and denote its orthocenter by $H$ . The point $D$ is located on the side $BC$ and the circumcircles of the triangles $ABD$ and $ACD$ intersects for the second time the lines $AC$ , respectively $AB$ in the points $E$ respectively $F$. If we denote by $P$ the intersection point of $BE$ and $CF$ then show that $HP \parallel BC$ if and only if $AD$ passes through the circumcenter of the triangle $ABC$.

2014 Contests, 4

The radius $r$ of a circle with center at the origin is an odd integer. There is a point ($p^m, q^n$) on the circle, with $p,q$ prime numbers and $m,n$ positive integers. Determine $r$.

Denmark (Mohr) - geometry, 1995.5

In the plane, six circles are given so that none of the circles contain one the center of the other. Show that there is no point that lies in all the circles.

1950 Moscow Mathematical Olympiad, 183

A circle is inscribed in a triangle and a square is circumscribed around this circle so that no side of the square is parallel to any side of the triangle. Prove that less than half of the square’s perimeter lies outside the triangle.

2022 Israel TST, 3

In triangle $ABC$, the angle bisectors are $BE$ and $CF$ (where $E, F$ are on the sides of the triangle), and their intersection point is $I$. Point $N$ lies on the circumcircle of $AEF$, and the angle $\angle IAN$ is right. The circumcircle of $AEF$ meets the line $NI$ a second time at the point $L$. Show that the circumcenter of $AIL$ lies on line $BC$.

Kyiv City MO Juniors 2003+ geometry, 2021.9.51

Two circles $\omega_1$ and $\omega_2$ intersect at points $A$ and $B$. A line passing through point $B$ intersects $\omega_1$ for the second time at point $C$ and $\omega_2$ at point $D$. The line $AC$ intersects circle $\omega_2$ for the second time at point $F$, and the line $AD$ intersects the circle $\omega_1$ for the second time at point $E$ . Let point $O$ be the center of the circle circumscribed around $\vartriangle AEF$. Prove that $OB \perp CD$.

2010 Sharygin Geometry Olympiad, 2

Tags: locus , geometry , circles
Two points $A$ and $B$ are given. Find the locus of points $C$ such that triangle $ABC$ can be covered by a circle with radius $1$. (Arseny Akopyan)

2012 Sharygin Geometry Olympiad, 5

A quadrilateral $ABCD$ with perpendicular diagonals is inscribed into a circle $\omega$. Two arcs $\alpha$ and $\beta$ with diameters AB and $CD$ lie outside $\omega$. Consider two crescents formed by the circle $\omega$ and the arcs $\alpha$ and $\beta$ (see Figure). Prove that the maximal radii of the circles inscribed into these crescents are equal. (F.Nilov)

1975 Bulgaria National Olympiad, Problem 4

In the plane are given a circle $k$ with radii $R$ and the points $A_1,A_2,\ldots,A_n$, lying on $k$ or outside $k$. Prove that there exist infinitely many points $X$ from the given circumference for which $$\sum_{i=1}^n A_iX^2\ge2nR^2.$$ Does there exist a pair of points on different sides of some diameter, $X$ and $Y$ from $k$, such that $$\sum_{i=1}^n A_iX^2\ge2nR^2\text{ and }\sum_{i=1}^n A_iY^2\ge2nR^2?$$ [i]H. Lesov[/i]

2010 Dutch BxMO TST, 4

The two circles $\Gamma_1$ and $\Gamma_2$ intersect at $P$ and $Q$. The common tangent that's on the same side as $P$, intersects the circles at $A$ and $B$,respectively. Let $C$ be the second intersection with $\Gamma_2$ of the tangent to $\Gamma_1$ at $P$, and let $D$ be the second intersection with $\Gamma_1$ of the tangent to $\Gamma_2$ at $Q$. Let $E$ be the intersection of $AP$ and $BC$, and let $F$ be the intersection of $BP$ and $AD$. Let $M$ be the image of $P$ under point reflection with respect to the midpoint of $AB$. Prove that $AMBEQF$ is a cyclic hexagon.

2018-IMOC, G2

Given $\vartriangle ABC$ with circumcircle $\Omega$. Assume $\omega_a, \omega_b, \omega_c$ are circles which tangent internally to $\Omega$ at $T_a,T_b, T_c $ and tangent to $BC,CA,AB$ at $P_a, P_b, P_c$, respectively. If $AT_a,BT_b,CT_c$ are collinear, prove that $AP_a,BP_b,CP_c$ are collinear.