This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2020 South East Mathematical Olympiad, 7

Given any prime $p \ge 3$. Show that for all sufficient large positive integer $x$, at least one of $x+1,x+2,\cdots,x+\frac{p+3}{2}$ has a prime divisor greater than $p$.

2012 Singapore Junior Math Olympiad, 2

Does there exist an integer $A$ such that each of the ten digits $0, 1, . . . , 9$ appears exactly once as a digit in exactly one of the numbers $A, A^2, A^ 3$ ?

2010 Princeton University Math Competition, 1

PUMaCDonalds, a newly-opened fast food restaurant, has 5 menu items. If the first 4 customers each choose one menu item at random, the probability that the 4th customer orders a previously unordered item is $m/n$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

2022 Czech and Slovak Olympiad III A, 5

Find all integers $n$ such that $2^n + n^2$ is a square of an integer. [i](Tomas Jurik )[/i]

TNO 2008 Senior, 9

Let $f: \mathbb{N} \to \mathbb{N}$ be a function that satisfies: \[ f(1) = 2008, \] \[ f(4n^2) = 4f(n^2), \] \[ f(4n^2 + 2) = 4f(n^2) + 3, \] \[ f(4n(n+1)) = 4f(n(n+1)) + 1, \] \[ f(4n(n+1) + 3) = 4f(n(n+1)) + 4. \] Determine whether there exists a natural number $m$ such that: \[ 1^2 + 2^2 + \dots + m^2 + f(1^2) + \dots + f(m^2) = 2008m + 251. \]

1999 IMO Shortlist, 1

Find all the pairs of positive integers $(x,p)$ such that p is a prime, $x \leq 2p$ and $x^{p-1}$ is a divisor of $ (p-1)^{x}+1$.

2013 AMC 10, 20

The number $2013$ is expressed in the form \[2013=\frac{a_1!a_2!\cdots a_m!}{b_1!b_2!\cdots b_n!},\] where $a_1\ge a_2\ge\cdots\ge a_m$ and $b_1\ge b_2\ge\cdots\ge b_n$ are positive integers and $a_1+b_1$ is as small as possible. What is $|a_1-b_1|$? ${ \textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D}}\ 4\qquad\textbf{(E)}\ 5 $

2023 CMIMC Algebra/NT, 1

Suppose $a$, $b$, $c$, and $d$ are non-negative integers such that \[(a+b+c+d)(a^2+b^2+c^2+d^2)^2=2023.\] Find $a^3+b^3+c^3+d^3$. [i]Proposed by Connor Gordon[/i]

2010 Contests, 2

Let $n$ be an integer, $n \ge 2$. Find the remainder of the division of the number $n(n + 1)(n + 2)$ by $n - 1$.

2003 Mid-Michigan MO, 5-6

[b]p1.[/b] One day, Granny Smith bought a certain number of apples at Horock’s Farm Market. When she returned the next day she found that the price of the apples was reduced by $20\%$. She could therefore buy more apples while spending the same amount as the previous day. How many percent more? [b]p2.[/b] You are asked to move several boxes. You know nothing about the boxes except that each box weighs no more than $10$ tons and their total weight is $100$ tons. You can rent several trucks, each of which can carry no more than $30$ tons. What is the minimal number of trucks you can rent and be sure you will be able to carry all the boxes at once? [b]p3.[/b] The five numbers $1, 2, 3, 4, 5$ are written on a piece of paper. You can select two numbers and increase them by $1$. Then you can again select two numbers and increase those by $1$. You can repeat this operation as many times as you wish. Is it possible to make all numbers equal? [b]p4.[/b] There are $15$ people in the room. Some of them are friends with others. Prove that there is a person who has an even number of friends in the room. [u]Bonus Problem [/u] [b]p5.[/b] Several ants are crawling along a circle with equal constant velocities (not necessarily in the same direction). If two ants collide, both immediately reverse direction and crawl with the same velocity. Prove that, no matter how many ants and what their initial positions are, they will, at some time, all simultaneously return to the initial positions. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2023 Harvard-MIT Mathematics Tournament, 7

If $a, b, c$, and $d$ are pairwise distinct positive integers that satisfy $lcm (a, b, c, d) < 1000$ and $a+b = c+d$, compute the largest possible value of $a + b$.

1996 Bundeswettbewerb Mathematik, 4

Let $p$ be an odd prime. Determine the positive integers $x$ and $y$ with $x\leq y$ for which the number $\sqrt{2p}-\sqrt{x}-\sqrt{y}$ is non-negative and as small as possible.

1997 Vietnam National Olympiad, 3

Find the number of functions $ f: \mathbb N\rightarrow\mathbb N$ which satisfying: (i) $ f(1) \equal{} 1$ (ii) $ f(n)f(n \plus{} 2) \equal{} f^2(n \plus{} 1) \plus{} 1997$ for every natural numbers n.

PEN A Problems, 113

Find all triples $(l, m, n)$ of distinct positive integers satisfying \[{\gcd(l, m)}^{2}= l+m, \;{\gcd(m, n)}^{2}= m+n, \; \text{and}\;\;{\gcd(n, l)}^{2}= n+l.\]

2006 Singapore Team Selection Test, 3

Let $n$ be a positive integer such that the sum of all its positive divisors (inclusive of $n$) equals to $2n + 1$. Prove that $n$ is an odd perfect square. related: https://artofproblemsolving.com/community/c6h515011 https://artofproblemsolving.com/community/c6h108341 (Putnam 1976) https://artofproblemsolving.com/community/c6h368488 https://artofproblemsolving.com/community/c6h445330 https://artofproblemsolving.com/community/c6h378928

1995 Hungary-Israel Binational, 1

Let the sum of the first $ n$ primes be denoted by $ S_n$. Prove that for any positive integer $ n$, there exists a perfect square between $ S_n$ and $ S_{n\plus{}1}$.

1992 India National Olympiad, 3

Find the remainder when $19^{92}$ is divided by 92.

2009 Balkan MO Shortlist, N2

Solve the equation \[ 3^x \minus{} 5^y \equal{} z^2.\] in positive integers. [i]Greece[/i]

2007 IMS, 7

$x_{1},x_{2},\dots,x_{n}$ are real number such that for each $i$, the set $\{x_{1},x_{2},\dots,x_{n}\}\backslash \{x_{i}\}$ could be partitioned into two sets that sum of elements of first set is equal to the sum of the elements of the other. Prove that all of $x_{i}$'s are zero. [hide="Hint"]It is a number theory problem.[/hide]

2012 Ukraine Team Selection Test, 7

Find all pairs of relatively prime integers $(x, y)$ that satisfy equality $2 (x^3 - x) = 5 (y^3 - y)$.

2022 Rioplatense Mathematical Olympiad, 6

In a board, the positive integer $N$ is written. In each round, Olive can realize any one of the following operations: I - Switch the current number by a positive multiple of the current number. II - Switch the current number by a number with the same digits of the current number, but the digits are written in another order(leading zeros are allowed). For instance, if the current number is $2022$, Olive can write any of the following numbers $222,2202,2220$. Determine all the positive integers $N$, such that, Olive can write the number $1$ after a finite quantity of rounds.

2016 Serbia National Math Olympiad, 1

Let $n>1$ be an integer. Prove that there exist $m>n^n $ such that $\frac {n^m-m^n}{m+n} $ is a positive integer.

1998 Brazil Team Selection Test, Problem 5

Consider $k$ positive integers $a_1,a_2,\ldots,a_k$ satisfying $1\le a_1<a_2<\ldots<a_k\le n$ and $\operatorname{lcm}(a_i,a_j)\le n$ for any $i,j$. Prove that $$k\le2\lfloor\sqrt n\rfloor.$$

2007 Indonesia MO, 2

For every positive integer $ n$, $ b(n)$ denote the number of positive divisors of $ n$ and $ p(n)$ denote the sum of all positive divisors of $ n$. For example, $ b(14)\equal{}4$ and $ p(14)\equal{}24$. Let $ k$ be a positive integer greater than $ 1$. (a) Prove that there are infinitely many positive integers $ n$ which satisfy $ b(n)\equal{}k^2\minus{}k\plus{}1$. (b) Prove that there are finitely many positive integers $ n$ which satisfy $ p(n)\equal{}k^2\minus{}k\plus{}1$.

2012 CHKMO, 1

Let $a_1,a_2,...,a_m(m\geq 1)$ be all the positive divisors of $n$. If there exist $m$ integers $b_1,b_2,...b_m$ such that $n=\sum_{i=1}^m (-1)^{b_i} a_i$, then $n$ is a $\textit{good}$ number. Prove that there exist a good number with exactly $2013$ distinct prime factors.