Found problems: 15460
2024 IFYM, Sozopol, 3
Let $(a_n)_{n\geq 1}$ be a (not necessarily strictly) increasing sequence of positive integers, such that $a_n \leq 1000n^{0.999}$ for every positive integer $n$. Prove that there exist infinitely many positive integers $n$ for which $a_n$ divides $n$.
2013 Kurschak Competition, 1
Let $a,b$ be positive real numbers satisfying $2ab=a-b$. Denote for any positive integer $k$ $x_k$ and $y_k$ to be the closest integer to $ak$ and $bk$, respectively (if there are two closest integers, choose the larger one). Prove that any positive integer $n$ appears in the sequence $(x_k)_{k\ge 1}$ if and only if it appears at least three times in the sequence $(y_k)_{k\ge 1}$.
1988 China National Olympiad, 6
Let $n$ ($n\ge 3$) be a natural number. Denote by $f(n)$ the least natural number by which $n$ is not divisible (e.g. $f(12)=5$). If $f(n)\ge 3$, we may have $f(f(n))$ in the same way. Similarly, if $f(f(n))\ge 3$, we may have $f(f(f(n)))$, and so on. If $\underbrace{f(f(\dots f}_{k\text{ times}}(n)\dots ))=2$, we call $k$ the “[i]length[/i]” of $n$ (also we denote by $l_n$ the “[i]length[/i]” of $n$). For arbitrary natural number $n$ ($n\ge 3$), find $l_n$ with proof.
1972 IMO Longlists, 46
Numbers $1, 2,\cdots, 16$ are written in a $4\times 4$ square matrix so that the sum of the numbers in every row, every column, and every diagonal is the same and furthermore that the numbers $1$ and $16$ lie in opposite corners. Prove that the sum of any two numbers symmetric with respect to the center of the square equals $17$.
2011 All-Russian Olympiad, 4
Do there exist any three relatively prime natural numbers so that the square of each of them is divisible by the sum of the two remaining numbers?
PEN N Problems, 3
Let $\,n>6\,$ be an integer and $\,a_{1},a_{2},\ldots,a_{k}\,$ be all the natural numbers less than $n$ and relatively prime to $n$. If \[a_{2}-a_{1}=a_{3}-a_{2}=\cdots =a_{k}-a_{k-1}>0,\] prove that $\,n\,$ must be either a prime number or a power of $\,2$.
2019 Brazil EGMO TST, 1
We say that a triple of integers $(x, y, z)$ is of [i]jenifer [/i] type if $x, y$, and $z$ are positive integers, with $y \ge 2$, and $$x^2 - 3y^2 = z^2 - 3.$$
a) Find a triple $(x, y, z)$ of the jenifer type with $x = 5$ and $x = 7$.
b) Show that for every $x \ge 5$ and odd there are at least two distinct triples $(x, y_1, z_1)$ and $(x, y_2, z_2)$ of jenifer type.
c) Find some triple $(x, y, z)$ of jenifer type with $x$ even.
1991 China National Olympiad, 4
Find all positive integer solutions $(x,y,z,n)$ of equation $x^{2n+1}-y^{2n+1}=xyz+2^{2n+1}$, where $n\ge 2$ and $z \le 5\times 2^{2n}$.
2014 Contests, 3
For all integers $n\ge 2$ with the following property:
[list]
[*] for each pair of positive divisors $k,~\ell <n$, at least one of the numbers $2k-\ell$ and $2\ell-k$ is a (not necessarily positive) divisor of $n$ as well.[/list]
2012 IFYM, Sozopol, 5
We are given the following sequence: $a_1=8,a_2=20,a_{n+2}=a_{n+1}^2+12a_n a_{n+1}+11a_n$. Prove that none of the members of the sequence can be presented as a sum of three seventh powers of natural numbers.
2009 Hanoi Open Mathematics Competitions, 8
Find all the pairs of the positive integers such that the product of the numbers of any pair plus the half of one of
the numbers plus one third of the other number is three times less than $1004$.
1978 Canada National Olympiad, 2
Find all pairs of $a$, $b$ of positive integers satisfying the equation $2a^2 = 3b^3$.
2023 Azerbaijan Senior NMO, 1
The teacher calculates and writes on the board all the numbers $a^b$ that satisfy the condition $n = a\times b$ for the natural number $n.$ Here $a$ and $b$ are natural numbers. Is there a natural number $n$ such that each of the numbers $0, 1, 2, 3, 4, 5, 6, 7, 8, 9$ is the last digit of one of the numbers written by the teacher on the board? Justify your opinion.
2014 China Team Selection Test, 6
Let $k$ be a fixed even positive integer, $N$ is the product of $k$ distinct primes $p_1,...,p_k$, $a,b$ are two positive integers, $a,b\leq N$. Denote
$S_1=\{d|$ $d|N, a\leq d\leq b, d$ has even number of prime factors$\}$,
$S_2=\{d|$ $d|N, a\leq d\leq b, d$ has odd number of prime factors$\}$,
Prove: $|S_1|-|S_2|\leq C^{\frac{k}{2}}_k$
2024 Regional Competition For Advanced Students, 3
On a table, we have ten thousand matches, two of which are inside a bowl. Anna and Bernd play the following game: They alternate taking turns and Anna begins. A turn consists of counting the matches in the bowl, choosing a proper divisor $d$ of this number and adding $d$ matches to the bowl. The game ends when more than $2024$ matches are in the bowl. The person who played the last turn wins. Prove that Anna can win independently of how Bernd plays.
[i](Richard Henner)[/i]
2023 Belarusian National Olympiad, 9.2
An unordered triple $(a,b,c)$ in one move can be changed to either of the triples: $(a,b,2a+2b-c)$,$(a,2a+2c-b,c)$ or $(2b+2c-a,b,c)$.
Can one get from triple $(3,5,14)$ the triple $(9,8,11)$ in finite amount of moves?
2017 Argentina National Olympiad, 2
In a row there are $51$ written positive integers. Their sum is $100$ . An integer is [i]representable [/i] if it can be expressed as the sum of several consecutive numbers in a row of $51$ integers. Show that for every $k$ , with $1\le k \le 100$ , one of the numbers $k$ and $100-k$ is representable.
2016 Germany Team Selection Test, 2
The positive integers $a_1,a_2, \dots, a_n$ are aligned clockwise in a circular line with $n \geq 5$. Let $a_0=a_n$ and $a_{n+1}=a_1$. For each $i \in \{1,2,\dots,n \}$ the quotient \[ q_i=\frac{a_{i-1}+a_{i+1}}{a_i} \] is an integer. Prove \[ 2n \leq q_1+q_2+\dots+q_n < 3n. \]
2003 China Team Selection Test, 3
Given $S$ be the finite lattice (with integer coordinate) set in the $xy$-plane. $A$ is the subset of $S$ with most elements such that the line connecting any two points in $A$ is not parallel to $x$-axis or $y$-axis. $B$ is the subset of integer with least elements such that for any $(x,y)\in S$, $x \in B$ or $y \in B$ holds. Prove that $|A| \geq |B|$.
2015 USAMO, 5
Let $a$, $b$, $c$, $d$, $e$ be distinct positive integers such that $a^4+b^4=c^4+d^4=e^5$. Show that $ac+bd$ is a composite number.
1992 All Soviet Union Mathematical Olympiad, 570
Define the sequence $a_1 = 1, a_2, a_3, ...$ by $$a_{n+1} = a_1^2 + a_2 ^2 + a_3^2 + ... + a_n^2 + n$$ Show that $1$ is the only square in the sequence.
2019 May Olympiad, 2
More than five competitors participated in a chess tournament. Each competitor played exactly once against each of the other competitors. Five of the competitors they each lost exactly two games. All other competitors each won exactly three games. There were no draws in the tournament. Determine how many competitors there were and show a tournament that verifies all conditions.
2021 Princeton University Math Competition, B2
The smallest three positive proper divisors of an integer n are $d_1 < d_2 < d_3$ and they satisfy $d_1 + d_2 + d_3 = 57$. Find the sum of the possible values of $d_2$.
2009 Brazil Team Selection Test, 1
Let $n$ be a positive integer and let $p$ be a prime number. Prove that if $a$, $b$, $c$ are integers (not necessarily positive) satisfying the equations \[ a^n + pb = b^n + pc = c^n + pa\] then $a = b = c$.
[i]Proposed by Angelo Di Pasquale, Australia[/i]
LMT Team Rounds 2010-20, 2016
[b]p1.[/b] Let $X,Y ,Z$ be nonzero real numbers such that the quadratic function $X t^2 - Y t + Z = 0$ has the unique root $t = Y$ . Find $X$.
[b]p2.[/b] Let $ABCD$ be a kite with $AB = BC = 1$ and $CD = AD =\sqrt2$. Given that $BD =\sqrt5$, find $AC$.
[b]p3.[/b] Find the number of integers $n$ such that $n -2016$ divides $n^2 -2016$. An integer $a$ divides an integer $b$ if there exists a unique integer $k$ such that $ak = b$.
[b]p4.[/b] The points $A(-16, 256)$ and $B(20, 400)$ lie on the parabola $y = x^2$ . There exists a point $C(a,a^2)$ on the parabola $y = x^2$ such that there exists a point $D$ on the parabola $y = -x^2$ so that $ACBD$ is a parallelogram. Find $a$.
[b]p5.[/b] Figure $F_0$ is a unit square. To create figure $F_1$, divide each side of the square into equal fifths and add two new squares with sidelength $\frac15$ to each side, with one of their sides on one of the sides of the larger square. To create figure $F_{k+1}$ from $F_k$ , repeat this same process for each open side of the smallest squares created in $F_n$. Let $A_n$ be the area of $F_n$. Find $\lim_{n\to \infty} A_n$.
[img]https://cdn.artofproblemsolving.com/attachments/8/9/85b764acba2a548ecc61e9ffc29aacf24b4647.png[/img]
[b]p6.[/b] For a prime $p$, let $S_p$ be the set of nonnegative integers $n$ less than $p$ for which there exists a nonnegative integer $k$ such that $2016^k -n$ is divisible by $p$. Find the sum of all $p$ for which $p$ does not divide the sum of the elements of $S_p$ .
[b]p7. [/b] Trapezoid $ABCD$ has $AB \parallel CD$ and $AD = AB = BC$. Unit circles $\gamma$ and $\omega$ are inscribed in the trapezoid such that circle $\gamma$ is tangent to $CD$, $AB$, and $AD$, and circle $\omega$ is tangent to $CD$, $AB$, and $BC$. If circles $\gamma$ and $\omega$ are externally tangent to each other, find $AB$.
[b]p8.[/b] Let $x, y, z$ be real numbers such that $(x+y)^2+(y+z)^2+(z+x)^2 = 1$. Over all triples $(x, y, z)$, find the maximum possible value of $y -z$.
[b]p9.[/b] Triangle $\vartriangle ABC$ has sidelengths $AB = 13$, $BC = 14$, and $CA = 15$. Let $P$ be a point on segment $BC$ such that $\frac{BP}{CP} = 3$, and let $I_1$ and $I_2$ be the incenters of triangles $\vartriangle ABP$ and $\vartriangle ACP$. Suppose that the circumcircle of $\vartriangle I_1PI_2$ intersects segment $AP$ for a second time at a point $X \ne P$. Find the length of segment $AX$.
[b]p10.[/b] For $1 \le i \le 9$, let Ai be the answer to problem i from this section. Let $(i_1,i_2,... ,i_9)$ be a permutation of $(1, 2,... , 9)$ such that $A_{i_1} < A_{i_2} < ... < A_{i_9}$. For each $i_j$ , put the number $i_j$ in the box which is in the $j$th row from the top and the $j$th column from the left of the $9\times 9$ grid in the bonus section of the answer sheet. Then, fill in the rest
of the squares with digits $1, 2,... , 9$ such that
$\bullet$ each bolded $ 3\times 3$ grid contains exactly one of each digit from $ 1$ to $9$,
$\bullet$ each row of the $9\times 9$ grid contains exactly one of each digit from $ 1$ to $9$, and
$\bullet$ each column of the $9\times 9$ grid contains exactly one of each digit from $ 1$ to $9$.
PS. You had better use hide for answers.