This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

Russian TST 2015, P3

Find all integers $k{}$ for which there are infinitely many triples of integers $(a,b,c)$ such that \[(a^2-k)(b^2-k)=c^2-k.\]

2021 Indonesia TST, N

Bamicin is initially at $(20, 20)$ in a cartesian plane. Every minute, if Bamicin is at point $P$, Bamicin can move to a lattice point exactly $37$ units from $P$. Determine all lattice points Bamicin can visit.

2020 AMC 10, 22

What is the remainder when $2^{202} +202$ is divided by $2^{101}+2^{51}+1$? $\textbf{(A) } 100 \qquad\textbf{(B) } 101 \qquad\textbf{(C) } 200 \qquad\textbf{(D) } 201 \qquad\textbf{(E) } 202$

2019 Azerbaijan BMO TST, 1

For positive integers $m$ and $n$, let $d(m, n)$ be the number of distinct primes that divide both $m$ and $n$. For instance, $d(60, 126) = d(2^2 \cdot 3 \cdot 5, 2 \cdot 3^2 \cdot 7) = 2.$ Does there exist a sequence $(a_n)$ of positive integers such that: [list] [*] $a_1 \geq 2018^{2018};$ [*] $a_m \leq a_n$ whenever $m \leq n$; [*] $d(m, n) = d(a_m, a_n)$ for all positive integers $m\neq n$? [/list] [i](Dominic Yeo, United Kingdom)[/i]

2016 Hanoi Open Mathematics Competitions, 8

Find all positive integers $x,y,z$ such that $x^3 - (x + y + z)^2 = (y + z)^3 + 34$

2005 Germany Team Selection Test, 1

Let $\tau(n)$ denote the number of positive divisors of the positive integer $n$. Prove that there exist infinitely many positive integers $a$ such that the equation $ \tau(an)=n $ does not have a positive integer solution $n$.

2006 All-Russian Olympiad Regional Round, 9.2

Each cell of the infinite checkered plane contains one from the numbers $1, 2, 3, 4$ so that each number appears at least once. Let's call a cell [i]correct [/i] if the number of distinct numbers written in four adjacent (side) cells to it, equal to the number written in this cell. Can all the cells of the plane be [i]correct[/i]?

1989 Turkey Team Selection Test, 1

Let $\mathbb{Z}^+$ denote the set of positive integers. Find all functions $f: \mathbb{Z}^+ \times \mathbb{Z}^+ \rightarrow \mathbb{Z}^+$ such that [list=i] [*] $f(m,m)=m$ [*] $f(m,k) = f(k,m)$ [*] $f(m, m+k) = f(m,k)$[/list] , for each $m,k \in \mathbb{Z}^+$.

2015 CHMMC (Fall), 8

Let $f(n) = \sum^n_{d=1} \left\lfloor \frac{n}{d} \right\rfloor$ and $g(n) = f(n) -f(n - 1)$. For how many $n$ from $1$ to $100$ inclusive is $g(n)$ even?

1999 Baltic Way, 17

Does there exist a finite sequence of integers $c_1,c_2,\ldots ,c_n$ such that all the numbers $a+c_1,a+c_2,\ldots ,a+c_n$ are primes for more than one but not infinitely many different integers $a$?

2009 Indonesia TST, 3

Find integer $ n$ with $ 8001 < n < 8200$ such that $ 2^n \minus{} 1$ divides $ 2^{k(n \minus{} 1)! \plus{} k^n} \minus{} 1$ for all integers $ k > n$.

1996 Singapore MO Open, 4

Determine all the solutions of the equation $x^3 + y^3 + z^3 = wx^2y^2z^2$ in natural numbers $x, y, z, w$. Justify your answer

2004 Alexandru Myller, 1

Show that the equation $ (x+y)^{-1}=x^{-1}+y^{-1} $ has a solution in the field of integers modulo $ p $ if and only if $ p $ is a prime congruent to $ 1 $ modulo $ 3. $ [i]Mihai Piticari[/i]

2018 PUMaC Live Round, 4.1

The number $400000001$ can be written as $p\cdot q$, where $p$ and $q$ are prime numbers. Find the sum of the prime factors of $p+q-1$.

2023 Bulgaria JBMO TST, 3

Find all natural numbers $a$, $b$, $c$ and prime numbers $p$ and $q$, such that: $\blacksquare$ $4\nmid c$ $\blacksquare$ $p\not\equiv 11\pmod{16}$ $\blacksquare$ $p^aq^b-1=(p+4)^c$

2022 Belarusian National Olympiad, 9.3

Positive integers $a$ and $b$ satisfy the equality $a+d(a)=b^2+2$ where $d(n)$ denotes the number of divisors of $n$. Prove that $a+b$ is even.

2025 Romania EGMO TST, P4

How does one show $$\text{lcm}\left(\binom{n}{1},\binom{n}{2},\ldots,\binom{n}{n}\right)=\frac{\text{lcm}(1,2,\ldots,n+1)}{n+1}$$

2023 Regional Competition For Advanced Students, 4

Determine all pairs $(x, y)$ of positive integers such that for $d = gcd(x, y)$ the equation $$xyd = x + y + d^2$$ holds. [i](Walther Janous)[/i]

2000 Czech and Slovak Match, 3

Let $n$ be a positive integer. Prove that $n$ is a power of two if and only if there exists an integer $m$ such that $2^n-1$ is a divisor of $m^2 +9$.

2023 Benelux, 4

A positive integer $n$ is [i]friendly[/i] if the difference of each pair of neighbouring digits of $n$, written in base $10$, is exactly $1$. [i]For example, 6787 is friendly, but 211 and 901 are not.[/i] Find all odd natural numbers $m$ for which there exists a friendly integer divisible by $64m$.

2002 Germany Team Selection Test, 3

Prove that there is no positive integer $n$ such that, for $k = 1,2,\ldots,9$, the leftmost digit (in decimal notation) of $(n+k)!$ equals $k$.

2014 China Team Selection Test, 3

Let the function $f:N^*\to N^*$ such that [b](1)[/b] $(f(m),f(n))\le (m,n)^{2014} , \forall m,n\in N^*$; [b](2)[/b] $n\le f(n)\le n+2014 , \forall n\in N^*$ Show that: there exists the positive integers $N$ such that $ f(n)=n $, for each integer $n \ge N$. (High School Affiliated to Nanjing Normal University )

2024 Mathematical Talent Reward Programme, 3

$\mathcal{P}(\mathbb{n})$ denotes the collection of all subsets of $\mathbb{N}$. Let $f:\mathbb{N} \longrightarrow \mathcal{P}(\mathbb{n})$ be a function such that $$f(n) = \bigcup_{d|n,d<n,n \geq 2} f(d)$$ Find the number of such functions $f$ for which the range of $f \subseteq$ {$1,2,3....2024$}.

2007 China Team Selection Test, 2

A rational number $ x$ is called [i]good[/i] if it satisfies: $ x\equal{}\frac{p}{q}>1$ with $ p$, $ q$ being positive integers, $ \gcd (p,q)\equal{}1$ and there exists constant numbers $ \alpha$, $ N$ such that for any integer $ n\geq N$, \[ |\{x^n\}\minus{}\alpha|\leq\dfrac{1}{2(p\plus{}q)}\] Find all the good numbers.

1969 IMO Shortlist, 22

$(FRA 5)$ Let $\alpha(n)$ be the number of pairs $(x, y)$ of integers such that $x+y = n, 0 \le y \le x$, and let $\beta(n)$ be the number of triples $(x, y, z)$ such that$ x + y + z = n$ and $0 \le z \le y \le x.$ Find a simple relation between $\alpha(n)$ and the integer part of the number $\frac{n+2}{2}$ and the relation among $\beta(n), \beta(n -3)$ and $\alpha(n).$ Then evaluate $\beta(n)$ as a function of the residue of $n$ modulo $6$. What can be said about $\beta(n)$ and $1+\frac{n(n+6)}{12}$? And what about $\frac{(n+3)^2}{6}$? Find the number of triples $(x, y, z)$ with the property $x+ y+ z \le n, 0 \le z \le y \le x$ as a function of the residue of $n$ modulo $6.$What can be said about the relation between this number and the number $\frac{(n+6)(2n^2+9n+12)}{72}$?