This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2019 USA IMO Team Selection Test, 2

Let $\mathbb{Z}/n\mathbb{Z}$ denote the set of integers considered modulo $n$ (hence $\mathbb{Z}/n\mathbb{Z}$ has $n$ elements). Find all positive integers $n$ for which there exists a bijective function $g: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$, such that the 101 functions \[g(x), \quad g(x) + x, \quad g(x) + 2x, \quad \dots, \quad g(x) + 100x\] are all bijections on $\mathbb{Z}/n\mathbb{Z}$. [i]Ashwin Sah and Yang Liu[/i]

2023 Ukraine National Mathematical Olympiad, 8.8

You are given a set of $m$ integers, all of which give distinct remainders modulo some integer $n$. Show that for any integer $k \le m$ you can split this set into $k$ nonempty groups so that the sums of elements in these groups are distinct modulo $n$. [i]Proposed by Anton Trygub[/i]

2011 Iran Team Selection Test, 12

Suppose that $f : \mathbb{N} \rightarrow \mathbb{N}$ is a function for which the expression $af(a)+bf(b)+2ab$ for all $a,b \in \mathbb{N}$ is always a perfect square. Prove that $f(a)=a$ for all $a \in \mathbb{N}$.

2022 Durer Math Competition (First Round), 4

We want to partition the integers $1, 2, 3, . . . , 100$ into several groups such that within each group either any two numbers are coprime or any two are not coprime. At least how many groups are needed for such a partition? [i]We call two integers coprime if they have no common divisor greater than $1$.[/i]

1987 Mexico National Olympiad, 6

Prove that for every positive integer n the number $(n^3 -n)(5^{8n+4} +3^{4n+2})$ is a multiple of $3804$.

1999 Greece JBMO TST, 3

Find digits $a,b,c,x$ ($a>0$) such that $\overline{abc}+\overline{acb}=\overline{199x}$

1992 Rioplatense Mathematical Olympiad, Level 3, 6

Definition: A natural number is [i]abundant [/i] if the sum of its positive divisors is greater than its double. Find an odd abundant number and prove that there are infinitely many odd abundant numbers.

1969 IMO Shortlist, 43

$(MON 4)$ Let $p$ and $q$ be two prime numbers greater than $3.$ Prove that if their difference is $2^n$, then for any two integers $m$ and $n,$ the number $S = p^{2m+1} + q^{2m+1}$ is divisible by $3.$

1993 Tournament Of Towns, (369) 1

Find all integers of the form $2^n$ (where $n$ is a natural number) such that after deleting the first digit of its decimal representation we again get a power of $2$.

2015 Stars Of Mathematics, 4

Let $n\ge 5$ be a positive integer and let $\{a_1,a_2,...,a_n\}=\{1,2,...,n\}$.Prove that at least $\lfloor \sqrt{n}\rfloor +1$ numbers from $a_1,a_1+a_2,...,a_1+a_2+...+a_n$ leave different residues when divided by $n$.

2018 Nepal National Olympiad, 1a

[b]Problem Section #1 a) A set contains four numbers. The six pairwise sums of distinct elements of the set, in no particular order, are $189, 320, 287, 264, x$, and y. Find the greatest possible value of: $x + y$. [color=red]NOTE: There is a high chance that this problems was copied.[/color]

2004 Estonia National Olympiad, 3

The teacher had written on the board a positive integer consisting of a number of $4$s followed by the same number of $8$s followed . During the break, Juku stepped up to the board and added to the number one more $4$ at the start and a $9$ at the end. Prove that the resulting number is an a square. of an integer.

2025 Chile TST IMO-Cono, 5

Let \( u_n \) be the \( n \)-th term of the Fibonacci sequence (where \( u_1 = u_2 = 1 \) and \( u_{n+1} = u_n + u_{n-1} \) for \( n \geq 2 \)). For each prime \( p \), let \( n(p) \) be the smallest integer \( n \) such that \( u_n \) is divisible by \( p \). Find the smallest possible value of \( p - n(p) \).

2023 Korea National Olympiad, 5

Find all positive integers $n$ such that $$\phi(n) + \sigma(n) = 2n + 8.$$

2000 Manhattan Mathematical Olympiad, 2

How many zeroes are there at the end the number $9^{999} + 1$?

2018 Belarusian National Olympiad, 11.7

Consider the expression $M(n, m)=|n\sqrt{n^2+a}-bm|$, where $n$ and $m$ are arbitrary positive integers and the numbers $a$ and $b$ are fixed, moreover $a$ is an odd positive integer and $b$ is a rational number with an odd denominator of its representation as an irreducible fraction. Prove that there is [b]a)[/b] no more than a finite number of pairs $(n, m)$ for which $M(n, m)=0$; [b]b)[/b] a positive constant $C$ such that the inequality $M(n, m)\geqslant0$ holds for all pairs $(n, m)$ with $M(n, m)\ne 0$.

2017 Romania Team Selection Test, P1

Let m be a positive interger, let $p$ be a prime, let $a_1=8p^m$, and let $a_n=(n+1)^{\frac{a_{n-1}}{n}}$, $n=2,3...$. Determine the primes $p$ for which the products $a_n(1-\frac{1}{a_1})(1-\frac{1}{a_2})...(1-\frac{1}{a_n})$, $n=1,2,3...$ are all integral.

2021 Kyiv City MO Round 1, 8.5

For a prime number $p > 3$, define the following irreducible fraction: $$\frac{m}{n} = \frac{p-1}{2} + \frac{p-2}{3} + \ldots + \frac{2}{p-1} - 1$$ Prove that $m$ is divisible by $p$. [i]Proposed by Oleksii Masalitin[/i]

2022 Latvia Baltic Way TST, P16

Find all triples of positive integers $(a,b,p)$, where $p$ is a prime, such that both $a+b$ and $ab+1$ are some powers of $p$ (not necessarily the same).

2020 SJMO, 6

We say a positive integer $n$ is [i]$k$-tasty[/i] for some positive integer $k$ if there exists a permutation $(a_0, a_1, a_2, \ldots , a_n)$ of $(0,1,2, \ldots, n)$ such that $|a_{i+1} - a_i| \in \{k, k+1\}$ for all $0 \le i \le n-1$. Prove that for all positive integers $k$, there exists a constant $N$ such that all integers $n \geq N$ are $k$-tasty. [i]Proposed by Anthony Wang[/i]

1966 IMO Shortlist, 34

Find all pairs of positive integers $\left( x;\;y\right) $ satisfying the equation $2^{x}=3^{y}+5.$

2024 Nigerian MO Round 3, Problem 2

Prove that there exist infinitely many distinct positive integers, $x$ and $y$, such that $$x^3+y^2|x^2+y^3$$

2019 Girls in Mathematics Tournament, 1

During the factoring class, Esmeralda observed that $1$, $3$ and $5$ can be written as the difference of two perfect squares, as can be seen: $1 = 1^2 - 0^2$ $3 = 2^2 - 1^2$ $5 = 3^2 - 2^2$ a) Show that all numbers written in the form $2 * m + 1$ can be written as a difference of two perfect squares. b) Show how to calculate the value of the expression $E = 1 + 3 + 5 + ... + (2m + 1)$. c) Esmeralda, happy with what she discovered, decided to look for other ways to write $2019$ as the difference of two perfect squares of positive integers. Determine how many ways it can do what you want.

1960 Kurschak Competition, 2

Let $a_1 = 1, a_2, a_3,...$: be a sequence of positive integers such that $$a_k < 1 + a_1 + a_2 +... + a_{k-1}$$ for all $k > 1$. Prove that every positive integer can be expressed as a sum of $a_i$s.

2007 India IMO Training Camp, 2

Find all integer solutions of the equation \[\frac {x^{7} \minus{} 1}{x \minus{} 1} \equal{} y^{5} \minus{} 1.\]