This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2012 ELMO Shortlist, 1

Find all positive integers $n$ such that $4^n+6^n+9^n$ is a square. [i]David Yang, Alex Zhu.[/i]

2006 MOP Homework, 3

Prove that the following inequality holds with the exception of finitely many positive integers $n$: $\sum^{n}_{i=1}\sum^{n}_{j=1}gcd(i,j)>4n^2$.

2004 Balkan MO, 2

Solve in prime numbers the equation $x^y - y^x = xy^2 - 19$.

2012 USA TSTST, 3

Let $\mathbb N$ be the set of positive integers. Let $f: \mathbb N \to \mathbb N$ be a function satisfying the following two conditions: (a) $f(m)$ and $f(n)$ are relatively prime whenever $m$ and $n$ are relatively prime. (b) $n \le f(n) \le n+2012$ for all $n$. Prove that for any natural number $n$ and any prime $p$, if $p$ divides $f(n)$ then $p$ divides $n$.

1999 VJIMC, Problem 2

Find all natural numbers $n\ge1$ such that the implication $$(11\mid a^n+b^n)\implies(11\mid a\wedge11\mid b)$$holds for any two natural numbers $a$ and $b$.

1984 IMO Longlists, 43

Let $a,b,c,d$ be odd integers such that $0<a<b<c<d$ and $ad=bc$. Prove that if $a+d=2^k$ and $b+c=2^m$ for some integers $k$ and $m$, then $a=1$.

2012 Irish Math Olympiad, 1

Let $S(n)$ be the sum of the decimal digits of $n$. For example. $S(2012)=2+0+1+2=5$. Prove that there is no integer $n>0$ for which $n-S(n)=9990$.

2020 IMO, 5

A deck of $n > 1$ cards is given. A positive integer is written on each card. The deck has the property that the arithmetic mean of the numbers on each pair of cards is also the geometric mean of the numbers on some collection of one or more cards. For which $n$ does it follow that the numbers on the cards are all equal? [i]Proposed by Oleg Košik, Estonia[/i]

2023 Kyiv City MO Round 1, Problem 4

Find all pairs $(m, n)$ of positive integers, for which number $2^n - 13^m$ is a cube of a positive integer. [i]Proposed by Oleksiy Masalitin[/i]

2010 Belarus Team Selection Test, 2.3

Prove that there are infinitely many positive integers $n$ such that $$3^{(n-2)^{n-1}-1} -1\vdots 17n^2$$ (I. Bliznets)

2023 Poland - Second Round, 1

Find all positive integers $b$ with the following property: there exists positive integers $a,k,l$ such that $a^k + b^l$ and $a^l + b^k$ are divisible by $b^{k+l}$ where $k \neq l$.

2013 Saudi Arabia GMO TST, 4

Let $F_0 = 0, F_1 = 1$ and $F_{n+1} = F_n + F_{n-1}$, for all positive integer $n$, be the Fibonacci sequence. Prove that for any positive integer $m$ there exist infinitely many positive integers $n$ such that $F_n + 2 \equiv F_{n+1} + 1 \equiv F_{n+2}$ mod $m$ .

2022 Philippine MO, 3

Call a lattice point [i]visible[/i] if the line segment connecting the point and the origin does not pass through another lattice point. Given a positive integer $k$, denote by $S_k$ the set of all visible lattice points $(x, y)$ such that $x^2 + y^2 = k^2$. Let $D$ denote the set of all positive divisors of $2021 \cdot 2025$. Compute the sum \[ \sum_{d \in D} |S_d| \] Here, a lattice point is a point $(x, y)$ on the plane where both $x$ and $y$ are integers, and $|A|$ denotes the number of elements of the set $A$.

2004 France Team Selection Test, 1

If $n$ is a positive integer, let $A = \{n,n+1,...,n+17 \}$. Does there exist some values of $n$ for which we can divide $A$ into two disjoints subsets $B$ and $C$ such that the product of the elements of $B$ is equal to the product of the elements of $C$?

2020 Baltic Way, 17

For a prime number $p$ and a positive integer $n$, denote by $f(p, n)$ the largest integer $k$ such that $p^k \mid n!$. Let $p$ be a given prime number and let $m$ and $c$ be given positive integers. Prove that there exist infinitely many positive integers $n$ such that $f(p, n) \equiv c \pmod m$.

2008 Hanoi Open Mathematics Competitions, 3

Show that the equation $x^2 + 8z = 3 + 2y^2$ has no solutions of positive integers $x, y$ and $z$.

2024 Iran MO (2nd Round), 3

Find all natural numbers $x,y>1$and primes $p$ that satisfy $$\frac{x^2-1}{y^2-1}=(p+1)^2. $$

2019 India PRMO, 7

Let $s(n)$ denote the sum of digits of a positive integer $n$ in base $10$. If $s(m)=20$ and $s(33m)=120$, what is the value of $s(3m)$?

2007 Singapore Team Selection Test, 3

Let $A,B,C$ be $3$ points on the plane with integral coordinates. Prove that there exists a point $P$ with integral coordinates distinct from $A,B$ and $C$ such that the interiors of the segments $PA,PB$ and $PC$ do not contain points with integral coordinates.

2016 China Western Mathematical Olympiad, 5

Prove that there exist infinitely many positive integer triples $(a,b,c)$ such that $a ,b,c$ are pairwise relatively prime ,and $ab+c ,bc+a ,ca+b$ are pairwise relatively prime .

2023 Chile TST Ibero., 1

Given a non-negative integer \( n \), determine the values of \( c \) for which the sequence of numbers \[ a_n = 4^n c + \frac{4^n - (-1)^n}{5} \] contains at least one perfect square.

2022 Middle European Mathematical Olympiad, 4

Initially, two distinct positive integers $a$ and $b$ are written on a blackboard. At each step, Andrea picks two distinct numbers $x$ and $y$ on the blackboard and writes the number $gcd(x, y) + lcm(x, y)$ on the blackboard as well. Let $n$ be a positive integer. Prove that, regardless of the values of $a$ and $b$, Andrea can perform a finite number of steps such that a multiple of $n$ appears on the blackboard.

2005 Morocco TST, 1

Find all the positive primes $p$ for which there exist integers $m,n$ satisfying : $p=m^2+n^2$ and $m^3+n^3-4$ is divisible by $p$.

2024 Ukraine National Mathematical Olympiad, Problem 2

You are given a positive integer $n$. Find the smallest positive integer $k$, for which there exist integers $a_1, a_2, \ldots, a_k$, for which the following equality holds: $$2^{a_1} + 2^{a_2} + \ldots + 2^{a_k} = 2^n - n + k$$ [i]Proposed by Mykhailo Shtandenko[/i]

2016 China Team Selection Test, 6

Let $m,n$ be naturals satisfying $n \geq m \geq 2$ and let $S$ be a set consisting of $n$ naturals. Prove that $S$ has at least $2^{n-m+1}$ distinct subsets, each whose sum is divisible by $m$. (The zero set counts as a subset).