This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2009 Bosnia And Herzegovina - Regional Olympiad, 2

For given positive integer $n$ find all quartets $(x_1,x_2,x_3,x_4)$ such that $x_1^2+x_2^2+x_3^2+x_4^2=4^n$

2021 Belarusian National Olympiad, 8.1

Prove that there exists a $2021$-digit positive integer $\overline{a_1a_2\ldots a_{2021}}$, with all its digits being non-zero, such that for every $1 \leq n \leq 2020$ the following equality holds $$\overline{a_1a_2\ldots a_n} \cdot \overline{a_{n+1}a_{n+2}\ldots a_{2021}}=\overline{a_1a_2\ldots a_{2021-n}} \cdot \overline{a_{2022-n}a_{2023-n}\ldots a_{2021}}$$ and all four numbers in the equality are pairwise different.

2020 Iran Team Selection Test, 1

We call a monic polynomial $P(x) \in \mathbb{Z}[x]$ [i]square-free mod n[/i] if there [u]dose not[/u] exist polynomials $Q(x),R(x) \in \mathbb{Z}[x]$ with $Q$ being non-constant and $P(x) \equiv Q(x)^2 R(x) \mod n$. Given a prime $p$ and integer $m \geq 2$. Find the number of monic [i]square-free mod p[/i] $P(x)$ with degree $m$ and coeeficients in $\{0,1,2,3,...,p-1\}$. [i]Proposed by Masud Shafaie[/i]

2011 Morocco National Olympiad, 4

Let $a, b, c, d, m, n$ be positive integers such that $a^{2}+b^{2}+c^{2}+d^{2}=1989$, $n^{2}=max\left \{ a,b,c,d \right \}$ and $a+b+c+d=m^{2}$. Find the values of $m$ and $n$.

2001 Finnish National High School Mathematics Competition, 3

Numbers $a, b$ and $c$ are positive integers and $\frac{1}{a}+\frac{1}{b}+\frac{ 1}{c}< 1.$ Show that \[\frac{1}{a}+\frac{1}{b}+\frac{ 1}{c}\leq \frac{41}{42}.\]

2013 AIME Problems, 6

Melinda has three empty boxes and $12$ textbooks, three of which are mathematics textbooks. One box will hold any three of her textbooks, one will hold any four of her textbooks, and one will hold any five of her textbooks. If Melinda packs her textbooks into these boxes in random order, the probability that all three mathematics textbooks end up in the same box can be written as $\frac{m}{n}$, where $m$ and $n$ Are relatively prime positive integers. Find $m+n$.

2021 Regional Olympiad of Mexico Center Zone, 1

Let $p$ be an odd prime number. Let $S=a_1,a_2,\dots$ be the sequence defined as follows: $a_1=1,a_2=2,\dots,a_{p-1}=p-1$, and for $n\ge p$, $a_n$ is the smallest integer greater than $a_{n-1}$ such that in $a_1,a_2,\dots,a_n$ there are no arithmetic progressions of length $p$. We say that a positive integer is a [i]ghost[/i] if it doesn’t appear in $S$. What is the smallest ghost that is not a multiple of $p$? [i]Proposed by Guerrero[/i]

1999 Poland - Second Round, 6

Suppose that $a_1,a_2,...,a_n$ are integers such that $a_1 +2^ia_2 +3^ia_3 +...+n^ia_n = 0$ for $i = 1,2,...,k -1$, where $k \ge 2$ is a given integer. Prove that $a_1+2^ka_2+3^ka_3+...+n^ka_n$ is divisible by $k!$.

2018 Greece Team Selection Test, 3

Find all functions $f:\mathbb{Z}_{>0}\mapsto\mathbb{Z}_{>0}$ such that $$xf(x)+(f(y))^2+2xf(y)$$ is perfect square for all positive integers $x,y$. **This problem was proposed by me for the BMO 2017 and it was shortlisted. We then used it in our TST.

MathLinks Contest 5th, 1.1

Find all pairs of positive integers $x, y$ such that $x^3 - y^3 = 2005(x^2 - y^2)$.

2001 Slovenia National Olympiad, Problem 2

Find all prime numbers $p$ for which $3^p-(p+2)^2$ is also prime.

1989 AMC 8, 2

$\frac{2}{10}+\frac{4}{100}+\frac{6}{1000} =$ $\text{(A)}\ .012 \qquad \text{(B)}\ .0246 \qquad \text{(C)}\ .12 \qquad \text{(D)}\ .246 \qquad \text{(E)}\ 246$

LMT Team Rounds 2021+, 14

Find $$\sum^{100}_{i=1}i \gcd(i ,100).$$

2014 IMO Shortlist, N8

For every real number $x$, let $||x||$ denote the distance between $x$ and the nearest integer. Prove that for every pair $(a, b)$ of positive integers there exist an odd prime $p$ and a positive integer $k$ satisfying \[\displaystyle\left|\left|\frac{a}{p^k}\right|\right|+\left|\left|\frac{b}{p^k}\right|\right|+\left|\left|\frac{a+b}{p^k}\right|\right|=1.\] [i]Proposed by Geza Kos, Hungary[/i]

2020 Jozsef Wildt International Math Competition, W14

Let $\{F_n\}_{n\ge1}$ be the Fibonacci sequence defined by $F_1=F_2=1$ and for all $n\ge3$, $F_n=F_{n-1}+F_{n-2}$. Prove that among the first $10000000000000002$ terms of the sequence there is one term that ends up with $8$ zeroes. [i]Proposed by José Luis Díaz-Barrero[/i]

2009 Singapore MO Open, 2

a palindromic number is a number which is unchanged when order of its digits is reversed. prove that the arithmetic progression 18, 37,.. contains infinitely many palindromic numbers.

2019 Serbia Team Selection Test, P3

It is given $n$ a natural number and a circle with circumference $n$. On the circle, in clockwise direction, numbers $0,1,2,\dots n-1$ are written, in this order and in the same distance to each other. Every number is colored red or blue, and there exists a non-zero number of numbers of each color. It is known that there exists a set $S\subsetneq \{0,1,2,\dots n-1\}, |S|\geq 2$, for wich it holds: if $(x,y), x<y$ is a circle sector whose endpoints are of distinct colors, whose distance $y-x$ is in $S$, then $y$ is in $S$. Prove that there is a divisor $d$ of $n$ different from $1$ and $n$ for wich holds: if $(x,y),x<y$ are different points of distinct colors, such that their distance is divisible by $d$, then both $x,y$ are divisible by $d$.

2023 Philippine MO, 1

Find all ordered pairs $(a, b)$ of positive integers such that $a^2 + b^2 + 25 = 15ab$ and $a^2 + ab + b^2$ is prime.

2014 Czech-Polish-Slovak Junior Match, 5

There is the number $1$ on the board at the beginning. If the number $a$ is written on the board, then we can also write a natural number $b$ such that $a + b + 1$ is a divisor of $a^2 + b^2 + 1$. Can any positive integer appear on the board after a certain time? Justify your answer.

2023 Singapore Junior Math Olympiad, 2

What is the maximum number of integers that can be chosen from $1,2,\dots,99$ so that the chosen integers can be arranged in a circle with the property that the product of every pair of neighbouring integers is 3-digit number?

1974 All Soviet Union Mathematical Olympiad, 201

Find all the three-digit numbers such that it equals to the arithmetic mean of the six numbers obtained by rearranging its digits.

2020 May Olympiad, 1

We say that a positive integer is super odd if all of its digits are odd. For example, 1737 is super odd and 3051 is not. Find an even positive integer that cannot be express as a sum of two super odd numbers and explain why it is not possible to express it thus.

2018 Argentina National Olympiad Level 2, 1

A list of $2018$ numbers is created using the following procedure: the first number is $47$, the second number is $74$, and from there, each number is equal to the number formed by the last two digits of the sum of the two previous numbers:$$47, 74, 21, 95, 16, 11, \dots$$ Bruno squares each of the $2018$ numbers and sums them. Determine the remainder when this sum is divided by $8$.

2012 China Team Selection Test, 2

For a positive integer $n$, denote by $\tau (n)$ the number of its positive divisors. For a positive integer $n$, if $\tau (m) < \tau (n)$ for all $m < n$, we call $n$ a good number. Prove that for any positive integer $k$, there are only finitely many good numbers not divisible by $k$.

1989 IMO Longlists, 50

Let $ a, b, c, d,m, n \in \mathbb{Z}^\plus{}$ such that \[ a^2\plus{}b^2\plus{}c^2\plus{}d^2 \equal{} 1989,\] \[ a\plus{}b\plus{}c\plus{}d \equal{} m^2,\] and the largest of $ a, b, c, d$ is $ n^2.$ Determine, with proof, the values of $m$ and $ n.$