Found problems: 15460
ABMC Accuracy Rounds, 2017
[b]p1.[/b] Len's Spanish class has four tests in the first term. Len scores $72$, $81$, and $78$ on the first three tests. If Len wants to have an 80 average for the term, what is the minimum score he needs on the last test?
[b]p2.[/b] In $1824$, the Electoral College had $261$ members. Andrew Jackson won $99$ Electoral College votes and John Quincy Adams won $84$ votes. A plurality occurs when no candidate has more than $50\%$ of the votes. Should a plurality occur, the vote goes to the House of Representatives to break the tie. How many more votes would Jackson have needed so that a plurality would not have occurred?
[b]p3.[/b] $\frac12 + \frac16 + \frac{1}{12} + \frac{1}{20} + \frac{1}{30}= 1 - \frac{1}{n}$. Find $n$.
[b]p4.[/b] How many ways are there to sit Samuel, Esun, Johnny, and Prat in a row of $4$ chairs if Prat and Johnny refuse to sit on an end?
[b]p5.[/b] Find an ordered quadruple $(w, x, y, z)$ that satisfies the following: $$3^w + 3^x + 3^y = 3^z$$ where $w + x + y + z = 2017$.
[b]p6.[/b] In rectangle $ABCD$, $E$ is the midpoint of $CD$. If $AB = 6$ inches and $AE = 6$ inches, what is the length of $AC$?
[b]p7.[/b] Call an integer interesting if the integer is divisible by the sum of its digits. For example, $27$ is divisible by $2 + 7 = 9$, so $27$ is interesting. How many $2$-digit interesting integers are there?
[b]p8.[/b] Let $a\#b = \frac{a^3-b^3}{a-b}$ . If $a, b, c$ are the roots of the polynomial $x^3 + 2x^2 + 3x + 4$, what is the value of $a\#b + b\#c + c\#a$?
[b]p9.[/b] Akshay and Gowri are examining a strange chessboard. Suppose $3$ distinct rooks are placed into the following chessboard. Find the number of ways that one can place these rooks so that they don't attack each other. Note that two rooks are considered attacking each other if they are in the same row or the same column.
[img]https://cdn.artofproblemsolving.com/attachments/f/1/70f7d68c44a7a69eb13ce12291c0600d11027c.png[/img]
[b]p10.[/b] The Earth is a very large sphere. Richard and Allen have a large spherical model of Earth, and they would like to (for some strange reason) cut the sphere up with planar cuts. If each cut intersects the sphere, and Allen holds the sphere together so it does not fall apart after each cut, what is the maximum number of pieces the sphere can be cut into after $6$ cuts?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2006 India IMO Training Camp, 2
the positive divisors $d_1,d_2,\cdots,d_k$ of a positive integer $n$ are ordered
\[1=d_1<d_2<\cdots<d_k=n\]
Suppose $d_7^2+d_{15}^2=d_{16}^2$. Find all possible values of $d_{17}$.
1997 Brazil Team Selection Test, Problem 4
Prove that it is impossible to arrange the numbers $1,2,\ldots,1997$ around a circle in such a way that, if $x$ and $y$ are any two neighboring numbers, then $499\le|x-y|\le997$.
2021 Brazil National Olympiad, 4
Let $d(n)$ be the quantity of positive divisors of $n$, for example $d(1)=1,d(2)=2,d(10)=4$. The [b]size[/b] of $n$ is $k$ if $k$ is the least positive integer, such that $d^k(n)=2$. Note that $d^s(n)=d(d^{s-1}(n))$.
a) How many numbers in the interval $[3,1000]$ have size $2$ ?
b) Determine the greatest size of a number in the interval $[3,1000]$.
2011 Costa Rica - Final Round, 2
Find the biggest positive integer $n$ such that $n$ is $167$ times the amount of it's positive divisors.
2009 Belarus Team Selection Test, 4
Let $x,y,z$ be integer numbers satisfying the equality $yx^2+(y^2-z^2)x+y(y-z)^2=0$
a) Prove that number $xy$ is a perfect square.
b) Prove that there are infinitely many triples $(x,y,z)$ satisfying the equality.
I.Voronovich
2011 Pre - Vietnam Mathematical Olympiad, 1
Determine all values of $n$ satisfied the following condition: there's exist a cyclic $(a_1,a_2,a_3,...,a_n)$ of $(1,2,3,...,n)$ such that $\left\{ {{a_1},{a_1}{a_2},{a_1}{a_2}{a_3},...,{a_1}{a_2}...{a_n}} \right\}$ is a complete residue systems modulo $n$.
2020 Serbian Mathematical Olympiad, Problem 5
For a natural number $n$, with $v_2(n)$ we denote the largest integer $k\geq0$ such that $2^k|n$. Let us assume that the function $f\colon\mathbb{N}\to\mathbb{N}$ meets the conditions:
$(i)$ $f(x)\leq3x$ for all natural numbers $x\in\mathbb{N}$.
$(ii)$ $v_2(f(x)+f(y))=v_2(x+y)$ for all natural numbers $x,y\in\mathbb{N}$.
Prove that for every natural number $a$ there exists exactly one natural number $x$ such that $f(x)=3a$.
2020 Macedonia Additional BMO TST, 2
Given are a prime $p$ and a positive integer $a$. Let $q$ be a prime divisor of $\frac{a^{p^3}-1}{a^{p^2}-1}$ and $q\neq p$. Prove that $q\equiv 1 ( \mod p^3)$.
2023 BMT, 3
Find the number of positive integers $n$ less than $10000$ such that there are more $4$’s in the digits of $n + 1$ than in the digits of $n$.
Mid-Michigan MO, Grades 10-12, 2012
[b]p1.[/b] A triangle $ABC$ is drawn in the plane. A point $D$ is chosen inside the triangle. Show that the sum of distances $AD+BD+CD$ is less than the perimeter of the triangle.
[b]p2.[/b] In a triangle $ABC$ the bisector of the angle $C$ intersects the side $AB$ at $M$, and the bisector of the angle $A$ intersects $CM$ at the point $T$. Suppose that the segments $CM$ and $AT$ divided the triangle $ABC$ into three isosceles triangles. Find the angles of the triangle $ABC$.
[b]p3.[/b] You are given $100$ weights of masses $1, 2, 3,..., 99, 100$. Can one distribute them into $10$ piles having the following property: the heavier the pile, the fewer weights it contains?
[b]p4.[/b] Each cell of a $10\times 10$ table contains a number. In each line the greatest number (or one of the largest, if more than one) is underscored, and in each column the smallest (or one of the smallest) is also underscored. It turned out that all of the underscored numbers are underscored exactly twice. Prove that all numbers stored in the table are equal to each other.
[b]p5.[/b] Two stores have warehouses in which wheat is stored. There are $16$ more tons of wheat in the first warehouse than in the second. Every night exactly at midnight the owner of each store steals from his rival, taking a quarter of the wheat in his rival's warehouse and dragging it to his own. After $10$ days, the thieves are caught. Which warehouse has more wheat at this point and by how much?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2022 Silk Road, 2
Distinct positive integers $A$ and $B$ are given$.$ Prove that there exist infinitely many positive integers that can be represented both as $x_{1}^2+Ay_{1}^2$ for some positive coprime integers $x_{1}$ and $y_{1},$ and as $x_{2}^2+By_{2}^2$ for some positive coprime integers $x_{2}$ and $y_{2}.$
[i](Golovanov A.S.)[/i]
2010 Math Prize For Girls Problems, 8
When Meena turned 16 years old, her parents gave her a cake with $n$ candles, where $n$ has exactly 16 different positive integer divisors. What is the smallest possible value of $n$?
2015 Czech-Polish-Slovak Match, 1
A strange calculator has only two buttons with positive itegers, each of them consisting of two digits. It displays the number 1 at the beginning. Whenever a button with number $N$ is pressed, the calculator replaces the displayed number $X$ with the number $X\cdot N$ or $X+N$. Multiplication and addition alternate, multiplication is the first. (For example,if the number 10 is on the 1st button, the number 20 is on the 2nd button, and we consecutively press the 1st, 2nd, 1st and 1st button, we get the results $1\cdot 10=10$, $10+20=30$, $30\cdot 10=300$, and $300+10=310$.) Decide whether there exist particular values of the two-digit nubers on the buttons such that one can display infinitely many numbers (without cleaning the display, i.e. you must keep going and get infinitel many numbers) ending with
(a) $2015$,
(b) $5813$.
[i]Proposed by Michal Rolínek and Peter Novotný[/i]
TNO 2008 Senior, 12
(a) Prove that there exist infinitely many natural numbers $n$ such that the sum of the digits of $11n$ is twice the sum of the digits of $n$.
(b) Prove that there exist infinitely many natural numbers $n$ such that the sum of the digits of $4n + 3$ is equal to the sum of the digits of $n$.
(c) Prove that for any natural number $n$, it is possible to find $n$ consecutive numbers such that none of them is prime.
2013 Danube Mathematical Competition, 2
Let $a, b, c, n$ be four integers, where n$\ge 2$, and let $p$ be a prime dividing both $a^2+ab+b^2$ and $a^n+b^n+c^n$, but not $a+b+c$. for instance, $a \equiv b \equiv -1 (mod \,\, 3), c \equiv 1 (mod \,\, 3), n$ a positive even integer, and $p = 3$ or $a = 4, b = 7, c = -13, n = 5$, and $p = 31$ satisfy these conditions. Show that $n$ and $p - 1$ are not coprime.
2003 China Team Selection Test, 3
Given $S$ be the finite lattice (with integer coordinate) set in the $xy$-plane. $A$ is the subset of $S$ with most elements such that the line connecting any two points in $A$ is not parallel to $x$-axis or $y$-axis. $B$ is the subset of integer with least elements such that for any $(x,y)\in S$, $x \in B$ or $y \in B$ holds. Prove that $|A| \geq |B|$.
2019 Korea - Final Round, 6
A sequence $\{x_n \}=x_0, x_1, x_2, \cdots $ satisfies $x_0=a(1\le a \le 2019, a \in \mathbb{R})$, and $$x_{n+1}=\begin{cases}1+1009x_n &\ (x_n \le 2) \\ 2021-x_n &\ (2<x_n \le 1010) \\ 3031-2x_n &\ (1010<x\le 1011) \\ 2020-x_n &\ (1011<x_n) \end{cases}$$ for each non-negative integer $n$. If there exist some integer $k>1$ such that $x_k=a$, call such minimum $k$ a [i] fundamental period[/i] of $\{x_n \}$. Find all integers which can be a fundamental period of some seqeunce; and for such minimal odd period $k(>1)$, find all values of $x_0=a$ such that the fundamental period of $\{x_n \}$ equals $k$.
2017 Princeton University Math Competition, B2
Let $S = \{1, 22, 333, \dots , 999999999\}$. For how many pairs of integers $(a, b)$ where $a, b \in S$ and $a < b$ is it the case that $a$ divides $b$?
2016 Cono Sur Olympiad, 4
Let $S(n)$ be the sum of the digits of the positive integer $n$. Find all $n$ such that $S(n)(S(n)-1)=n-1$.
2006 All-Russian Olympiad Regional Round, 8.1
Find some nine-digit number $N$, consisting of different digits, such that among all the numbers obtained from $N$ by crossing out seven digits, there would be no more than one prime. Prove that the number found is correct. (If the number obtained by crossing out the digits starts at zero, then the zero is crossed out.)
2007 Tournament Of Towns, 5
Find all (finite) increasing arithmetic progressions, consisting only of prime numbers, such that the number of terms is larger than the common difference.
2007 Junior Balkan Team Selection Tests - Romania, 4
Find all integer positive numbers $n$ such that:
$n=[a,b]+[b,c]+[c,a]$, where $a,b,c$ are integer positive numbers and $[p,q]$ represents the least common multiple of numbers $p,q$.
2010 Singapore MO Open, 3
Suppose that $a_1,...,a_{15}$ are prime numbers forming an arithmetic progression with common difference $d > 0$ if $a_1 > 15$ show that $d > 30000$
MMATHS Mathathon Rounds, 2016
[u]Round 5[/u]
[b]p13.[/b] Let $\{a\} _{n\ge 1}$ be an arithmetic sequence, with $a_ 1 = 0$, such that for some positive integers $k$ and $x$ we have $a_{k+1} = {k \choose x}$, $a_{2k+1} ={k \choose {x+1}}$ , and $a_{3k+1} ={k \choose {x+2}}$. Let $\{b\}_{n\ge 1}$ be an arithmetic sequence of integers with $b_1 = 0$. Given that there is some integer $m$ such that $b_m ={k \choose x}$, what is the number of possible values of $b_2$?
[b]p14.[/b] Let $A = arcsin \left( \frac14 \right)$ and $B = arcsin \left( \frac17 \right)$. Find $\sin(A + B) \sin(A - B)$.
[b]p15.[/b] Let $\{f_i\}^{9}_{i=1}$ be a sequence of continuous functions such that $f_i : R \to Z$ is continuous (i.e. each $f_i$ maps from the real numbers to the integers). Also, for all $i$, $f_i(i) = 3^i$. Compute $\sum^{9}_{k=1} f_k \circ f_{k-1} \circ ... \circ f_1(3^{-k})$.
[u]Round 6[/u]
[b]p16.[/b] If $x$ and $y$ are integers for which $\frac{10x^3 + 10x^2y + xy^3 + y^4}{203}= 1134341$ and $x - y = 1$, then compute $x + y$.
[b]p17.[/b] Let $T_n$ be the number of ways that n letters from the set $\{a, b, c, d\}$ can be arranged in a line (some letters may be repeated, and not every letter must be used) so that the letter a occurs an odd number of times. Compute the sum $T_5 + T_6$.
[b]p18.[/b] McDonald plays a game with a standard deck of $52$ cards and a collection of chips numbered $1$ to $52$. He picks $1$ card from a fully shuffled deck and $1$ chip from a bucket, and his score is the product of the numbers on card and on the chip. In order to win, McDonald must obtain a score that is a positive multiple of $6$. If he wins, the game ends; if he loses, he eats a burger, replaces the card and chip, shuffles the deck, mixes the chips, and replays his turn. The probability that he wins on his third turn can be written in the form $\frac{x^2 \cdot y}{z^3}$ such that $x, y$, and $z$ are relatively prime positive integers. What is $x + y + z$?
(NOTE: Use Ace as $1$, Jack as $11$, Queen as $12$, and King as $13$)
[u]Round 7[/u]
[b]p19.[/b] Let $f_n(x) = ln(1 + x^{2^n}+ x^{2^{n+1}}+ x^{3\cdot 2^n})$. Compute $\sum^{\infty}_{k=0} f_{2k} \left( \frac12 \right)$.
[b]p20.[/b] $ABCD$ is a quadrilateral with $AB = 183$, $BC = 300$, $CD = 55$, $DA = 244$, and $BD = 305$. Find $AC$.
[b]p21.[/b] Define $\overline{xyz(t + 1)} = 1000x + 100y + 10z + t + 1$ as the decimal representation of a four digit integer. You are given that $3^x5^y7^z2^t = \overline{xyz(t + 1)}$ where $x, y, z$, and t are non-negative integers such that $t$ is odd and $0 \le x, y, z,(t + 1) \le 9$. Compute$3^x5^y7^z$
PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c4h2782822p24445934]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].