This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 54

1999 Tournament Of Towns, 2

Prove that there exist infinitely many odd positive integers $n$ for which the number $2^n + n$ is composite. (V Senderov)

2013 Costa Rica - Final Round, 2

Determine all even positive integers that can be written as the sum of odd composite positive integers.

2015 Thailand Mathematical Olympiad, 8

Let $m$ and $n$ be positive integers such that $m - n$ is odd. Show that $(m + 3n)(5m + 7n)$ is not a perfect square.

2002 Estonia National Olympiad, 3

John takes seven positive integers $a_1,a_2,...,a_7$ and writes the numbers $a_i a_j$, $a_i+a_j$ and $|a_i -a_j |$ for all $i \ne j$ on the blackboard. Find the greatest possible number of distinct odd integers on the blackboard.