This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 54

1976 Chisinau City MO, 121

Prove that the polynomial $P (x)$ with integer coefficients, taking odd values for $x = 0$ and $x= 1$, has no integer roots.

2003 Junior Balkan Team Selection Tests - Romania, 2

Let $a$ be a positive integer such that the number $a^n$ has an odd number of digits in the decimal representation for all $n > 0$. Prove that the number $a$ is an even power of $10$.

2002 Estonia National Olympiad, 3

John takes seven positive integers $a_1,a_2,...,a_7$ and writes the numbers $a_i a_j$, $a_i+a_j$ and $|a_i -a_j |$ for all $i \ne j$ on the blackboard. Find the greatest possible number of distinct odd integers on the blackboard.

2011 Belarus Team Selection Test, 1

Given natural number $a>1$ and different odd prime numbers $p_1,p_2,...,p_n$ with $a^{p_1}\equiv 1$ (mod $p_2$), $a^{p_2}\equiv 1$ (mod $p_3$), ..., $a^{p_n}\equiv 1$(mod $p_1$). Prove that a) $(a-1)\vdots p_i$ for some $i=1,..,n$ b) Can $(a-1)$ be divisible by $p_i $for exactly one $i$ of $i=1,...,n$? I. Bliznets