This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3

1990 IMO Shortlist, 23

Determine all integers $ n > 1$ such that \[ \frac {2^n \plus{} 1}{n^2} \] is an integer.

1990 IMO Longlists, 79

Determine all integers $ n > 1$ such that \[ \frac {2^n \plus{} 1}{n^2} \] is an integer.

1990 IMO, 3

Determine all integers $ n > 1$ such that \[ \frac {2^n \plus{} 1}{n^2} \] is an integer.