This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 43

1981 IMO, 2

Take $r$ such that $1\le r\le n$, and consider all subsets of $r$ elements of the set $\{1,2,\ldots,n\}$. Each subset has a smallest element. Let $F(n,r)$ be the arithmetic mean of these smallest elements. Prove that: \[ F(n,r)={n+1\over r+1}. \]

2013 Harvard-MIT Mathematics Tournament, 11

Compute the prime factorization of $1007021035035021007001$. (You should write your answer in the form $p_1^{e_1}p_2^{e_2}\ldots p_k^{e_k}$ where $p_1,\ldots,p_k$ are distinct prime numbers and $e_1,\ldots,e_k$ are positive integers.)

2007 AIME Problems, 13

A triangular array of squares has one square in the first row, two in the second, and in general, $k$ squares in the $k$th row for $1 \leq k \leq 11.$ With the exception of the bottom row, each square rests on two squares in the row immediately below (illustrated in given diagram). In each square of the eleventh row, a $0$ or a $1$ is placed. Numbers are then placed into the other squares, with the entry for each square being the sum of the entries in the two squares below it. For how many initial distributions of $0$'s and $1$'s in the bottom row is the number in the top square a multiple of $3$? [asy] defaultpen(linewidth(0.7)); path p=origin--(1,0)--(1,1)--(0,1)--cycle; int i,j; for(i=0; i<12; i=i+1) { for(j=0; j<11-i; j=j+1) { draw(shift(i/2+j,i)*p); }}[/asy]

1977 AMC 12/AHSME, 10

If $(3x-1)^7 = a_7x^7 + a_6x^6 + \cdots + a_0$, then $a_7 + a_6 + \cdots + a_0$ equals \[ \text{(A)}\ 0 \qquad \text{(B)}\ 1 \qquad \text{(C)}\ 64 \qquad \text{(D)}\ -64 \qquad \text{(E)}\ 128 \]

2006 AMC 12/AHSME, 23

Given a finite sequence $ S \equal{} (a_1,a_2,\ldots,a_n)$ of $ n$ real numbers, let $ A(S)$ be the sequence \[ \left(\frac {a_1 \plus{} a_2}2,\frac {a_2 \plus{} a_3}2,\ldots,\frac {a_{n \minus{} 1} \plus{} a_n}2\right) \]of $ n \minus{} 1$ real numbers. Define $ A^1(S) \equal{} A(S)$ and, for each integer $ m$, $ 2\le m\le n \minus{} 1$, define $ A^m(S) \equal{} A(A^{m \minus{} 1}(S)).$ Suppose $ x > 0$, and let $ S \equal{} (1,x,x^2,\ldots,x^{100})$. If $ A^{100}(S) \equal{} (1/2^{50})$, then what is $ x$? $ \textbf{(A) } 1 \minus{} \frac {\sqrt {2}}2\qquad \textbf{(B) } \sqrt {2} \minus{} 1\qquad \textbf{(C) } \frac 12\qquad \textbf{(D) } 2 \minus{} \sqrt {2}\qquad \textbf{(E) } \frac {\sqrt {2}}2$

2011 ELMO Shortlist, 3

Wanda the Worm likes to eat Pascal's triangle. One day, she starts at the top of the triangle and eats $\textstyle\binom{0}{0}=1$. Each move, she travels to an adjacent positive integer and eats it, but she can never return to a spot that she has previously eaten. If Wanda can never eat numbers $a,b,c$ such that $a+b=c$, prove that it is possible for her to eat 100,000 numbers in the first 2011 rows given that she is not restricted to traveling only in the first 2011 rows. (Here, the $n+1$st row of Pascal's triangle consists of entries of the form $\textstyle\binom{n}{k}$ for integers $0\le k\le n$. Thus, the entry $\textstyle\binom{n}{k}$ is considered adjacent to the entries $\textstyle\binom{n-1}{k-1}$, $\textstyle\binom{n-1}{k}$, $\textstyle\binom{n}{k-1}$, $\textstyle\binom{n}{k+1}$, $\textstyle\binom{n+1}{k}$, $\textstyle\binom{n+1}{k+1}$.) [i]Linus Hamilton.[/i]

1985 IMO Longlists, 59

For any polynomial $P(x)=a_0+a_1x+\ldots+a_kx^k$ with integer coefficients, the number of odd coefficients is denoted by $o(P)$. For $i-0,1,2,\ldots$ let $Q_i(x)=(1+x)^i$. Prove that if $i_1,i_2,\ldots,i_n$ are integers satisfying $0\le i_1<i_2<\ldots<i_n$, then: \[ o(Q_{i_{1}}+Q_{i_{2}}+\ldots+Q_{i_{n}})\ge o(Q_{i_{1}}). \]

1988 AIME Problems, 15

In an office at various times during the day, the boss gives the secretary a letter to type, each time putting the letter on top of the pile in the secretary's in-box. When there is time, the secretary takes the top letter off the pile and types it. There are nine letters to be typed during the day, and the boss delivers them in the order 1, 2, 3, 4, 5, 6, 7, 8, 9. While leaving for lunch, the secretary tells a colleague that letter 8 has already been typed, but says nothing else about the morning's typing. The colleague wonder which of the nine letters remain to be typed after lunch and in what order they will be typed. Based upon the above information, how many such after-lunch typing orders are possible? (That there are no letters left to be typed is one of the possibilities.)

2008 ITest, 78

Feeling excited over her successful explorations into Pascal's Triangle, Wendy formulates a second problem to use during a future Jupiter Falls High School Math Meet: \[\text{How many of the first 2010 rows of Pascal's Triangle (Rows 0 through 2009)} \ \text{have exactly 256 odd entries?}\] What is the solution to Wendy's second problem?

2005 iTest, 3

Find the probability that any given row in Pascal’s Triangle contains a perfect square. [i] (.1 point)[/i]

2008 China Northern MO, 2

The given triangular number table is as follows: [img]https://cdn.artofproblemsolving.com/attachments/a/0/123b7511850047f3cc51494f107703f2757085.png[/img] Among them, the numbers in the first row are $1, 2, 3, ..., 98, 99, 100$. Starting from the second row, each number is equal to the sum of the left and right numbers in the row above it. Find the value of $M$.

2017 Harvard-MIT Mathematics Tournament, 7

Let $p$ be a prime. A [i]complete residue class modulo $p$[/i] is a set containing at least one element equivalent to $k \pmod{p}$ for all $k$. (a) Show that there exists an $n$ such that the $n$th row of Pascal's triangle forms a complete residue class modulo $p$. (b) Show that there exists an $n \le p^2$ such that the $n$th row of Pascal's triangle forms a complete residue class modulo $p$.

2008 ITest, 77

With about six hours left on the van ride home from vacation, Wendy looks for something to do. She starts working on a project for the math team. There are sixteen students, including Wendy, who are about to be sophomores on the math team. Elected as a math team officer, one of Wendy's jobs is to schedule groups of the sophomores to tutor geometry students after school on Tuesdays. The way things have been done in the past, the same number of sophomores tutor every week, but the same group of students never works together. Wendy notices that there are even numbers of groups she could select whether she chooses $4$ or $5$ students at a time to tutor geometry each week: \begin{align*}\dbinom{16}4&=1820,\\\dbinom{16}5&=4368.\end{align*} Playing around a bit more, Wendy realizes that unless she chooses all or none of the students on the math team to tutor each week that the number of possible combinations of the sophomore math teamers is always even. This gives her an idea for a problem for the $2008$ Jupiter Falls High School Math Meet team test: \[\text{How many of the 2009 numbers on Row 2008 of Pascal's Triangle are even?}\] Wendy works the solution out correctly. What is her answer?

2006 Italy TST, 1

Let $S$ be a string of $99$ characters, $66$ of which are $A$ and $33$ are $B$. We call $S$ [i]good[/i] if, for each $n$ such that $1\le n \le 99$, the sub-string made from the first $n$ characters of $S$ has an odd number of distinct permutations. How many good strings are there? Which strings are good?

2006 QEDMO 3rd, 5

Find all positive integers $n$ such that there are $\infty$ many lines of Pascal's triangle that have entries coprime to $n$ only. In other words: such that there are $\infty$ many $k$ with the property that the numbers $\binom{k}{0},\binom{k}{1},\binom{k}{2},...,\binom{k}{k}$ are all coprime to $n$.

2010 ISI B.Stat Entrance Exam, 8

Take $r$ such that $1\le r\le n$, and consider all subsets of $r$ elements of the set $\{1,2,\ldots,n\}$. Each subset has a smallest element. Let $F(n,r)$ be the arithmetic mean of these smallest elements. Prove that: \[ F(n,r)={n+1\over r+1}. \]

1985 IMO Shortlist, 3

For any polynomial $P(x)=a_0+a_1x+\ldots+a_kx^k$ with integer coefficients, the number of odd coefficients is denoted by $o(P)$. For $i-0,1,2,\ldots$ let $Q_i(x)=(1+x)^i$. Prove that if $i_1,i_2,\ldots,i_n$ are integers satisfying $0\le i_1<i_2<\ldots<i_n$, then: \[ o(Q_{i_{1}}+Q_{i_{2}}+\ldots+Q_{i_{n}})\ge o(Q_{i_{1}}). \]

1980 IMO Longlists, 9

Let $p$ be a prime number. Prove that there is no number divisible by $p$ in the $n-th$ row of Pascal's triangle if and only if $n$ can be represented in the form $n = p^sq - 1$, where $s$ and $q$ are integers with $s \geq 0, 0 < q < p$.