This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2024 AMC 10, 24

A bee is moving in three-dimensional space. A fair six-sided die with faces labeled $A^+, A^-, B^+, B^-, C^+$, and $C^-$ is rolled. Suppose the bee occupies the point $(a, b, c)$. If the die shows $A^+$, then the bee moves to the point $(a+1, b, c)$ and if the die shows $A^-$, then the bee moves to the point $(a-1, b, c)$. Analogous moves are made with the other four outcomes. Suppose the bee starts at the point $(0, 0, 0)$ and the die is rolled four times. What is the probability that the bee traverses four distinct edges of some unit cube? $ \textbf{(A) }\frac{1}{54} \qquad \textbf{(B) }\frac{7}{54} \qquad \textbf{(C) }\frac{1}{6} \qquad \textbf{(D) }\frac{5}{18} \qquad \textbf{(E) }\frac{2}{5} \qquad $