This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 7

2014 China Team Selection Test, 6

Let $k$ be a fixed even positive integer, $N$ is the product of $k$ distinct primes $p_1,...,p_k$, $a,b$ are two positive integers, $a,b\leq N$. Denote $S_1=\{d|$ $d|N, a\leq d\leq b, d$ has even number of prime factors$\}$, $S_2=\{d|$ $d|N, a\leq d\leq b, d$ has odd number of prime factors$\}$, Prove: $|S_1|-|S_2|\leq C^{\frac{k}{2}}_k$

2017 Bulgaria National Olympiad, 3

Let $M$ be a set of $2017$ positive integers. For any subset $A$ of $M$ we define $f(A) := \{x\in M\mid \text{ the number of the members of }A\,,\, x \text{ is multiple of, is odd }\}$. Find the minimal natural number $k$, satisfying the condition: for any $M$, we can color all the subsets of $M$ with $k$ colors, such that whenever $A\neq f(A)$, $A$ and $f(A)$ are colored with different colors.

2011 Belarus Team Selection Test, 3

In a concert, 20 singers will perform. For each singer, there is a (possibly empty) set of other singers such that he wishes to perform later than all the singers from that set. Can it happen that there are exactly 2010 orders of the singers such that all their wishes are satisfied? [i]Proposed by Gerhard Wöginger, Austria[/i]

2014 China Team Selection Test, 6

Let $k$ be a fixed even positive integer, $N$ is the product of $k$ distinct primes $p_1,...,p_k$, $a,b$ are two positive integers, $a,b\leq N$. Denote $S_1=\{d|$ $d|N, a\leq d\leq b, d$ has even number of prime factors$\}$, $S_2=\{d|$ $d|N, a\leq d\leq b, d$ has odd number of prime factors$\}$, Prove: $|S_1|-|S_2|\leq C^{\frac{k}{2}}_k$

1997 Romania Team Selection Test, 4

Let $p,q,r$ be distinct prime numbers and let \[A=\{p^aq^br^c\mid 0\le a,b,c\le 5\} \] Find the least $n\in\mathbb{N}$ such that for any $B\subset A$ where $|B|=n$, has elements $x$ and $y$ such that $x$ divides $y$. [i]Ioan Tomescu[/i]

2024 Ukraine National Mathematical Olympiad, Problem 3

Let's define [i]almost mean[/i] of numbers $a_1, a_2, \ldots, a_n$ as $\frac{a_1 + a_2 + \ldots + a_n}{n+1}$. Oleksiy has positive real numbers $b_1, b_2, \ldots, b_{2023}$, not necessarily distinct. For each pair $(i, j)$ with $1 \leq i, j \leq 2023$, Oleksiy wrote on a board [i]almost mean[/i] of numbers $b_i, b_{i+1}, \ldots, b_j$. Prove that there are at least $45$ distinct numbers on the board. [i]Proposed by Anton Trygub[/i]

2010 IMO Shortlist, 1

In a concert, 20 singers will perform. For each singer, there is a (possibly empty) set of other singers such that he wishes to perform later than all the singers from that set. Can it happen that there are exactly 2010 orders of the singers such that all their wishes are satisfied? [i]Proposed by Gerhard Wöginger, Austria[/i]