This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2017 Bosnia and Herzegovina Junior BMO TST, 4

In each cell of $5 \times 5$ table there is one number from $1$ to $5$ such that every number occurs exactly once in every row and in every column. Number in one column is [i]good positioned[/i] if following holds: - In every row, every number which is left from [i]good positoned[/i] number is smaller than him, and every number which is right to him is greater than him, or vice versa. - In every column, every number which is above from [i]good positoned[/i] number is smaller than him, and every number which is below to him is greater than him, or vice versa. What is maximal number of good positioned numbers that can occur in this table?