Found problems: 15
2024 Israel TST, P3
Find all continuous functions $f\colon \mathbb{R}_{>0}\to \mathbb{R}_{\geq 1}$ for which the following equation holds for all positive reals $x$, $y$:
\[f\left(\frac{f(x)}{y}\right)-f\left(\frac{f(y)}{x}\right)=xy\left(f(x+1)-f(y+1)\right)\]
2014 JBMO Shortlist, 9
Let $n$ a positive integer and let $x_1, \ldots, x_n, y_1, \ldots, y_n$ real positive numbers such that $x_1+\ldots+x_n=y_1+\ldots+y_n=1$. Prove that:
$$|x_1-y_1|+\ldots+|x_n-y_n|\leq 2-\underset{1\leq i\leq n}{min} \;\dfrac{x_i}{y_i}-\underset{1\leq i\leq n}{min} \;\dfrac{y_i}{x_i}$$
2023 4th Memorial "Aleksandar Blazhevski-Cane", P2
Let $\mathbb{R}^{+}$ be the set of positive real numbers. Find all functions $f:\mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ such that for all $x,y>0$ we have
$$f(xy+f(x))=yf(x)+x.$$
[i]Proposed by Nikola Velov[/i]
Kvant 2020, M2603
For an infinite sequence $a_1, a_2,. . .$ denote as it's [i]first derivative[/i] is the sequence $a'_n= a_{n + 1} - a_n$ (where $n = 1, 2,..$.), and her $k$- th derivative as the first derivative of its $(k-1)$-th derivative ($k = 2, 3,...$). We call a sequence [i]good[/i] if it and all its derivatives consist of positive numbers.
Prove that if $a_1, a_2,. . .$ and $b_1, b_2,. . .$ are good sequences, then sequence $a_1\cdot b_1, a_2 \cdot b_2,..$ is also a good one.
R. Salimov
2022 OMpD, 2
We say that a sextuple of positive real numbers $(a_1, a_2, a_3, b_1, b_2, b_3)$ is $\textit{phika}$ if $a_1 + a_2 + a_3 = b_1 + b_2 + b_3 = 1$.
(a) Prove that there exists a $\textit{phika}$ sextuple $(a_1, a_2, a_3, b_1, b_2, b_3)$ such that:
$$a_1(\sqrt{b_1} + a_2) + a_2(\sqrt{b_2} + a_3) + a_3(\sqrt{b_3} + a_1) > 1 - \frac{1}{2022^{2022}}$$
(b) Prove that for every $\textit{phika}$ sextuple $(a_1, a_2, a_3, b_1, b_2, b_3)$, we have:
$$a_1(\sqrt{b_1} + a_2) + a_2(\sqrt{b_2} + a_3) + a_3(\sqrt{b_3} + a_1) < 1$$
2016 Saint Petersburg Mathematical Olympiad, 2
Given the positive numbers $x_1, x_2,..., x_n$, such that $x_i \le 2x_j$ with $1 \le i < j \le n$.
Prove that there are positive numbers $y_1\le y_2\le...\le y_n$, such that $x_k \le y_k \le 2x_k$ for all $k=1,2,..., n$
2013 Bosnia and Herzegovina Junior BMO TST, 2
Let $a$, $b$ and $c$ be positive real numbers such that $a^2+b^2+c^2=3$. Prove the following inequality:
$\frac{a}{3c(a^2-ab+b^2)} + \frac{b}{3a(b^2-bc+c^2)} + \frac{c}{3b(c^2-ca+a^2)} \leq \frac{1}{abc}$
2004 Bosnia and Herzegovina Team Selection Test, 3
Let $a$, $b$ and $c$ be positive real numbers such that $abc=1$. Prove the inequality:
$\frac{ab}{a^5+b^5+ab} +\frac{bc}{b^5+c^5+bc}+\frac{ac}{c^5+a^5+ac}\leq 1$
2012 Korea Junior Math Olympiad, 7
If all $x_k$ ($k = 1, 2, 3, 4, 5)$ are positive reals, and $\{a_1,a_2, a_3, a_4, a_5\} = \{1, 2,3 , 4, 5\}$, find the maximum of
$$\frac{(\sqrt{s_1x_1} +\sqrt{s_2x_2}+\sqrt{s_3x_3}+\sqrt{s_4x_4}+\sqrt{s_5x_5})^2}{a_1x_1 + a_2x_2 + a_3x_3 + a_4x_4 + a_5x_5}$$
($s_k = a_1 + a_2 +... + a_k$)
2020 Tournament Of Towns, 4
For an infinite sequence $a_1, a_2,. . .$ denote as it's [i]first derivative[/i] is the sequence $a'_n= a_{n + 1} - a_n$ (where $n = 1, 2,..$.), and her $k$- th derivative as the first derivative of its $(k-1)$-th derivative ($k = 2, 3,...$). We call a sequence [i]good[/i] if it and all its derivatives consist of positive numbers.
Prove that if $a_1, a_2,. . .$ and $b_1, b_2,. . .$ are good sequences, then sequence $a_1\cdot b_1, a_2 \cdot b_2,..$ is also a good one.
R. Salimov
2014 JBMO Shortlist, 1
Solve in positive real numbers: $n+ \lfloor \sqrt{n} \rfloor+\lfloor \sqrt[3]{n} \rfloor=2014$
2014 JBMO Shortlist, 2
Let $a, b, c$ be positive real numbers such that $abc = \dfrac {1} {8}$. Prove the inequality:$$a ^ 2 + b ^ 2 + c ^ 2 + a ^ 2b ^ 2 + b ^ 2c ^ 2 + c ^ 2a ^ 2 \geq \dfrac {15} {16}$$
When the equality holds?
2018 Junior Regional Olympiad - FBH, 4
Let $a$, $b$ and $c$ be positive real numbers such that $a \geq b \geq c$. Prove the inequality:
$\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \leq \frac{b}{a}+\frac{c}{b}+\frac{a}{c}$
2009 Bosnia and Herzegovina Junior BMO TST, 2
Let $a$ , $b$, $c$ and $d$ be positive real numbers such that $a+b+c+d=8$. Prove that $\frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d}\geq8$
2020 OMpD, 4
Let $\mathbb{R}^+$ the set of positive real numbers. Determine all the functions $f, g: \mathbb{R}^+ \rightarrow \mathbb{R}^+$ such that, for all positive real numbers $x, y$ we have that
$$f(x + g(y)) = f(x + y) + g(y) \text{ and } g(x + f(y)) = g(x + y) + f(y)$$