This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 10

1989 IMO Longlists, 93

Prove that for each positive integer $ n$ there exist $ n$ consecutive positive integers none of which is an integral power of a prime number.

2013 IFYM, Sozopol, 3

Let $a$ and $b$ be two distinct natural numbers. It is known that $a^2+b|b^2+a$ and that $b^2+a$ is a power of a prime number. Determine the possible values of $a$ and $b$.

2006 Junior Tuymaada Olympiad, 2

Ten different odd primes are given. Is it possible that for any two of them, the difference of their sixteenth powers to be divisible by all the remaining ones ?

2011 Ukraine Team Selection Test, 3

Given a positive integer $ n> 2 $. Prove that there exists a natural $ K $ such that for all integers $ k \ge K $ on the open interval $ ({{k} ^{n}}, \ {{(k + 1)} ^{n}}) $ there are $n$ different integers, the product of which is the $n$-th power of an integer.

1989 IMO Shortlist, 30

Prove that for each positive integer $ n$ there exist $ n$ consecutive positive integers none of which is an integral power of a prime number.

1989 IMO, 5

Prove that for each positive integer $ n$ there exist $ n$ consecutive positive integers none of which is an integral power of a prime number.

2012 Polish MO Finals, 1

Decide, whether exists positive rational number $w$, which isn't integer, such that $w^w$ is a rational number.

1989 Spain Mathematical Olympiad, 4

Show that the number $1989$ as well as each of its powers $1989^n$ ($n \in N$), can be expressed as a sum of two positive squares in at least two ways.

2022 New Zealand MO, 2

Is it possible to pair up the numbers $0, 1, 2, 3,... , 61$ in such a way that when we sum each pair, the product of the $31$ numbers we get is a perfect f ifth power?

2022 Cono Sur, 3

Prove that for every positive integer $n$ there exists a positive integer $k$, such that each of the numbers $k, k^2, \dots, k^n$ have at least one block of $2022$ in their decimal representation. For example, the numbers 4[b]2022[/b]13 and 544[b]2022[/b]1[b]2022[/b] have at least one block of $2022$ in their decimal representation.