This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 721

1977 IMO Longlists, 27

Let $n$ be a given number greater than 2. We consider the set $V_n$ of all the integers of the form $1 + kn$ with $k = 1, 2, \ldots$ A number $m$ from $V_n$ is called indecomposable in $V_n$ if there are not two numbers $p$ and $q$ from $V_n$ so that $m = pq.$ Prove that there exist a number $r \in V_n$ that can be expressed as the product of elements indecomposable in $V_n$ in more than one way. (Expressions which differ only in order of the elements of $V_n$ will be considered the same.)

2013 National Olympiad First Round, 2

How many triples $(p,q,n)$ are there such that $1/p+2013/q = n/5$ where $p$, $q$ are prime numbers and $n$ is a positive integer? $ \textbf{(A)}\ 7 \qquad\textbf{(B)}\ 6 \qquad\textbf{(C)}\ 5 \qquad\textbf{(D)}\ 4 \qquad\textbf{(E)}\ 4 $

2022 SG Originals, Q5

Let $n\ge 2$ be a positive integer. For any integer $a$, let $P_a(x)$ denote the polynomial $x^n+ax$. Let $p$ be a prime number and define the set $S_a$ as the set of residues mod $p$ that $P_a(x)$ attains. That is, $$S_a=\{b\mid 0\le b\le p-1,\text{ and there is }c\text{ such that }P_a(c)\equiv b \pmod{p}\}.$$Show that the expression $\frac{1}{p-1}\sum\limits_{a=1}^{p-1}|S_a|$ is an integer. [i]Proposed by fattypiggy123[/i]

2003 APMO, 3

Let $k\ge 14$ be an integer, and let $p_k$ be the largest prime number which is strictly less than $k$. You may assume that $p_k\ge 3k/4$. Let $n$ be a composite integer. Prove: (a) if $n=2p_k$, then $n$ does not divide $(n-k)!$; (b) if $n>2p_k$, then $n$ divides $(n-k)!$.

2011 Greece Team Selection Test, 1

Find all prime numbers $p,q$ such that: $$p^4+p^3+p^2+p=q^2+q$$

2018 Latvia Baltic Way TST, P16

Call a natural number [i]simple[/i] if it is not divisible by any square of a prime number (in other words it is square-free). Prove that there are infinitely many positive integers $n$ such that both $n$ and $n+1$ are [i]simple[/i].

2003 Pan African, 3

Does there exists a base in which the numbers of the form: \[ 10101, 101010101, 1010101010101,\cdots \] are all prime numbers?

2024 Polish MO Finals, 3

Determine all pairs $(p,q)$ of prime numbers with the following property: There are positive integers $a,b,c$ satisfying \[\frac{p}{a}+\frac{p}{b}+\frac{p}{c}=1 \quad \text{and} \quad \frac{a}{p}+\frac{b}{p}+\frac{c}{p}=q+1.\]

2024 Mexican University Math Olympiad, 1

Let \( x \), \( y \), \( p \) be positive integers that satisfy the equation \( x^4 = p + 9y^4 \), where \( p \) is a prime number. Show that \( \frac{p^2 - 1}{3} \) is a perfect square and a multiple of 16.

2024 Romanian Master of Mathematics, 2

Consider an odd prime $p$ and a positive integer $N < 50p$. Let $a_1, a_2, \ldots , a_N$ be a list of positive integers less than $p$ such that any specific value occurs at most $\frac{51}{100}N$ times and $a_1 + a_2 + \cdots· + a_N$ is not divisible by $p$. Prove that there exists a permutation $b_1, b_2, \ldots , b_N$ of the $a_i$ such that, for all $k = 1, 2, \ldots , N$, the sum $b_1 + b_2 + \cdots + b_k$ is not divisible by $p$. [i]Will Steinberg, United Kingdom[/i]

2002 Bosnia Herzegovina Team Selection Test, 3

Let $p$ and $q$ be different prime numbers. Solve the following system in integers: \[\frac{z+ p}x+\frac{z-p}y= q,\\ \frac{z+ p}y -\frac{z-p}x= q.\]

2009 Regional Olympiad of Mexico Center Zone, 2

Let $p \ge 2$ be a prime number and $a \ge 1$ a positive integer with $p \neq a$. Find all pairs $(a,p)$ such that: $a+p \mid a^2+p^2$

2009 Germany Team Selection Test, 1

For which $ n \geq 2, n \in \mathbb{N}$ are there positive integers $ A_1, A_2, \ldots, A_n$ which are not the same pairwise and have the property that the product $ \prod^n_{i \equal{} 1} (A_i \plus{} k)$ is a power for each natural number $ k.$

1974 IMO Longlists, 2

Let ${u_n}$ be the Fibonacci sequence, i.e., $u_0=0,u_1=1,u_n=u_{n-1}+u_{n-2}$ for $n>1$. Prove that there exist infinitely many prime numbers $p$ that divide $u_{p-1}$.

2019 Macedonia Junior BMO TST, 5

Let $p_{1}$, $p_{2}$, ..., $p_{k}$ be different prime numbers. Determine the number of positive integers of the form $p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}}...p_{k}^{\alpha_{k}}$, $\alpha_{i}$ $\in$ $\mathbb{N}$ for which $\alpha_{1} \alpha_{2}...\alpha_{k}=p_{1}p_{2}...p_{k}$.

2007 May Olympiad, 4

Alex and Bruno play the following game: each one, in your turn, the player writes, exactly one digit, in the right of the last number written. The game finishes if we have a number with $6$ digits( distincts ) and Alex starts the game. Bruno wins if the number with $6$ digits is a prime number, otherwise Alex wins. Which player has the winning strategy?

2016 Hong Kong TST, 3

Let $p$ be a prime number greater than 5. Suppose there is an integer $k$ satisfying that $k^2+5$ is divisible by $p$. Prove that there are positive integers $m$ and $n$ such that $p^2=m^2+5n^2$

1987 IMO Shortlist, 20

Let $n\ge2$ be an integer. Prove that if $k^2+k+n$ is prime for all integers $k$ such that $0\le k\le\sqrt{n\over3}$, then $k^2+k+n$ is prime for all integers $k$ such that $0\le k\le n-2$.[i](IMO Problem 6)[/i] [b][i]Original Formulation[/i][/b] Let $f(x) = x^2 + x + p$, $p \in \mathbb N.$ Prove that if the numbers $f(0), f(1), \cdots , f( \sqrt{p\over 3} )$ are primes, then all the numbers $f(0), f(1), \cdots , f(p - 2)$ are primes. [i]Proposed by Soviet Union. [/i]

2016 Spain Mathematical Olympiad, 2

Given a positive prime number $p$. Prove that there exist a positive integer $\alpha$ such that $p|\alpha(\alpha-1)+3$, if and only if there exist a positive integer $\beta$ such that $p|\beta(\beta-1)+25$.

2012 Belarus Team Selection Test, 1

Find all primes numbers $p$ such that $p^2-p-1$ is the cube of some integer.

2021 ITAMO, 6

A sequence $x_1, x_2, ..., x_n, ...$ consists of an initial block of $p$ positive distinct integers that then repeat periodically. This means that $\{x_1, x_2, \dots, x_p\}$ are $p$ distinct positive integers and $x_{n+p}=x_n$ for every positive integer $n$. The terms of the sequence are not known and the goal is to find the period $p$. To do this, at each move it possible to reveal the value of a term of the sequence at your choice. (a) Knowing that $1 \le p \le 10$, find the least $n$ such that there is a strategy which allows to find $p$ revealing at most $n$ terms of the sequence. (b) Knowing that $p$ is one of the first $k$ prime numbers, find for which values of $k$ there exist a strategy that allows to find $p$ revealing at most $5$ terms of the sequence.

2019 Dutch IMO TST, 4

Find all functions $f : Z \to Z$ satisfying $\bullet$ $ f(p) > 0$ for all prime numbers $p$, $\bullet$ $p| (f(x) + f(p))^{f(p)}- x$ for all $x \in Z$ and all prime numbers $p$.

2010 Contests, 2

Let $P(x)$ be a polynomial with real coefficients. Prove that there exist positive integers $n$ and $k$ such that $k$ has $n$ digits and more than $P(n)$ positive divisors.

2021 Bolivia Ibero TST, 3

Let $p=ab+bc+ac$ be a prime number where $a,b,c$ are different two by two, show that $a^3,b^3,c^3$ gives different residues modulo $p$

2023 Czech and Slovak Olympiad III A., 4

Let $(a_n)_{n = 0}^{\infty} $ be a sequence of positive integers such that for every $n \geq 0$ it is true that $$a_{n+2} = a_0 a_1 + a_1 a_2 + ... + a_n a_{n+1} - 1 $$ a) Prove that there exist a prime number which divides infinitely many $a_n$ b) Prove that there exist infinitely many such prime numbers