This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 721

2005 IMO Shortlist, 3

Let $ a$, $ b$, $ c$, $ d$, $ e$, $ f$ be positive integers and let $ S = a+b+c+d+e+f$. Suppose that the number $ S$ divides $ abc+def$ and $ ab+bc+ca-de-ef-df$. Prove that $ S$ is composite.

2009 Indonesia TST, 3

Find integer $ n$ with $ 8001 < n < 8200$ such that $ 2^n \minus{} 1$ divides $ 2^{k(n \minus{} 1)! \plus{} k^n} \minus{} 1$ for all integers $ k > n$.

2018 PUMaC Live Round, 4.1

The number $400000001$ can be written as $p\cdot q$, where $p$ and $q$ are prime numbers. Find the sum of the prime factors of $p+q-1$.

2023 Bulgaria JBMO TST, 3

Find all natural numbers $a$, $b$, $c$ and prime numbers $p$ and $q$, such that: $\blacksquare$ $4\nmid c$ $\blacksquare$ $p\not\equiv 11\pmod{16}$ $\blacksquare$ $p^aq^b-1=(p+4)^c$

2009 Miklós Schweitzer, 2

Let $ p_1,\dots,p_k$ be prime numbers, and let $ S$ be the set of those integers whose all prime divisors are among $ p_1,\dots,p_k$. For a finite subset $ A$ of the integers let us denote by $ \mathcal G(A)$ the graph whose vertices are the elements of $ A$, and the edges are those pairs $ a,b\in A$ for which $ a \minus{} b\in S$. Does there exist for all $ m\geq 3$ an $ m$-element subset $ A$ of the integers such that (i) $ \mathcal G(A)$ is complete? (ii) $ \mathcal G(A)$ is connected, but all vertices have degree at most 2?

1994 APMO, 3

Let $n$ be an integer of the form $a^2 + b^2$, where $a$ and $b$ are relatively prime integers and such that if $p$ is a prime, $p \leq \sqrt{n}$, then $p$ divides $ab$. Determine all such $n$.

2023 Poland - Second Round, 6

Given a chessboard $n \times n$, where $n\geq 4$ and $p=n+1$ is a prime number. A set of $n$ unit squares is called [i]tactical[/i] if after putting down queens on these squares, no two queens are attacking each other. Prove that there exists a partition of the chessboard into $n-2$ tactical sets, not containing squares on the main diagonals. Queens are allowed to move horizontally, vertically and diagonally.

2010 Bundeswettbewerb Mathematik, 1

Exists a positive integer $n$ such that the number $\underbrace{1...1}_{n \,ones} 2 \underbrace{1...1}_{n \, ones}$ is a prime number?

2017 Iran MO (3rd round), 1

Let $n$ be a positive integer. Consider prime numbers $p_1,\dots ,p_k$. Let $a_1,\dots,a_m$ be all positive integers less than $n$ such that are not divisible by $p_i$ for all $1 \le i \le n$. Prove that if $m\ge 2$ then $$\frac{1}{a_1}+\dots+\frac{1}{a_m}$$ is not an integer.

2011 IFYM, Sozopol, 2

Let $k>1$ and $n$ be natural numbers and $p=\frac{((n+1)(n+2)…(n+k))}{k!}-1$. Prove that, if $p$ is prime, then $n|k!$.

1991 USAMO, 3

Show that, for any fixed integer $\,n \geq 1,\,$ the sequence \[ 2, \; 2^2, \; 2^{2^2}, \; 2^{2^{2^2}}, \ldots (\mbox{mod} \; n) \] is eventually constant. [The tower of exponents is defined by $a_1 = 2, \; a_{i+1} = 2^{a_i}$. Also $a_i \; (\mbox{mod} \; n)$ means the remainder which results from dividing $a_i$ by $n$.]

1973 Miklós Schweitzer, 3

Find a constant $ c > 1$ with the property that, for arbitrary positive integers $ n$ and $ k$ such that $ n>c^k$, the number of distinct prime factors of $ \binom{n}{k}$ is at least $ k$. [i]P. Erdos[/i]

2023 Brazil EGMO Team Selection Test, 2

Let $p$ and $q$ be distinct odd primes. Show that $$\bigg\lceil \dfrac{p^q+q^p-pq+1}{pq} \bigg\rceil$$ is even.

2024 Macedonian Balkan MO TST, Problem 3

Let $p \neq 5$ be a prime number. Prove that $p^5-1$ has a prime divisor of the form $5x+1$.

2017 India PRMO, 28

Let $p,q$ be prime numbers such that $n^{3pq}-n$ is a multiple of $3pq$ for [b]all[/b] positive integers $n$. Find the least possible value of $p+q$.

2015 Germany Team Selection Test, 3

Construct a tetromino by attaching two $2 \times 1$ dominoes along their longer sides such that the midpoint of the longer side of one domino is a corner of the other domino. This construction yields two kinds of tetrominoes with opposite orientations. Let us call them $S$- and $Z$-tetrominoes, respectively. Assume that a lattice polygon $P$ can be tiled with $S$-tetrominoes. Prove that no matter how we tile $P$ using only $S$- and $Z$-tetrominoes, we always use an even number of $Z$-tetrominoes. [i]Proposed by Tamas Fleiner and Peter Pal Pach, Hungary[/i]

1998 IMO Shortlist, 5

Determine the least possible value of $f(1998),$ where $f:\Bbb{N}\to \Bbb{N}$ is a function such that for all $m,n\in {\Bbb N}$, \[f\left( n^{2}f(m)\right) =m\left( f(n)\right) ^{2}. \]

2010 Pan African, 1

a) Show that it is possible to pair off the numbers $1,2,3,\ldots ,10$ so that the sums of each of the five pairs are five different prime numbers. b) Is it possible to pair off the numbers $1,2,3,\ldots ,20$ so that the sums of each of the ten pairs are ten different prime numbers?

2018 Stars of Mathematics, 2

Find the smallest natural $ k $ such that among any $ k $ distinct and pairwise coprime naturals smaller than $ 2018, $ a prime can be found. [i]Vlad Robu[/i]

2015 Caucasus Mathematical Olympiad, 4

We call a number greater than $25$, [i] semi-prime[/i] if it is the sum of some two different prime numbers. What is the greatest number of consecutive natural numbers that can be [i]semi-prime[/i]?

1992 Turkey Team Selection Test, 1

Is there $14$ consecutive positive integers such that each of these numbers is divisible by one of the prime numbers $p$ where $2\leq p \leq 11$.

1993 IMO Shortlist, 2

A natural number $n$ is said to have the property $P,$ if, for all $a, n^2$ divides $a^n - 1$ whenever $n$ divides $a^n - 1.$ a.) Show that every prime number $n$ has property $P.$ b.) Show that there are infinitely many composite numbers $n$ that possess property $P.$

2013 Korea - Final Round, 5

Two coprime positive integers $ a, b $ are given. Integer sequence $ \{ a_n \}, \{b_n \} $ satisties \[ (a+b \sqrt2 )^{2n} = a_n + b_n \sqrt2 \] Find all prime numbers $ p $ such that there exist positive integer $ n \le p $ satisfying $ p | b_n $.

2010 China Team Selection Test, 2

Prove that there exists a sequence of unbounded positive integers $a_1\leq a_2\leq a_3\leq\cdots$, such that there exists a positive integer $M$ with the following property: for any integer $n\geq M$, if $n+1$ is not prime, then any prime divisor of $n!+1$ is greater than $n+a_n$.

2018 Centroamerican and Caribbean Math Olympiad, 3

Let $x, y$ be real numbers such that $x-y, x^2-y^2, x^3-y^3$ are all prime numbers. Prove that $x-y=3$. EDIT: Problem submitted by Leonel Castillo, Panama.