Found problems: 1111
2008 IMS, 7
In a contest there are $ n$ yes-no problems. We know that no two contestants have the same set of answers. To each question we give a random uniform grade of set $ \{1,2,3,\dots,2n\}$. Prove that the probability that exactly one person gets first is at least $ \frac12$.
2006 AMC 10, 25
A bug starts at one vertex of a cube and moves along the edges of the cube according to the following rule. At each vertex the bug will choose to travel along one of the three edges emanating from that vertex. Each edge has equal probability of being chosen, and all choices are independent. What is the probability that after seven moves the bug will have visited every vertex exactly once?
$ \textbf{(A) } \frac {1}{2187} \qquad \textbf{(B) } \frac {1}{729} \qquad \textbf{(C) } \frac {2}{243} \qquad \textbf{(D) } \frac {1}{81} \qquad \textbf{(E) } \frac {5}{243}$
2012 Iran MO (3rd Round), 2
Suppose $W(k,2)$ is the smallest number such that if $n\ge W(k,2)$, for each coloring of the set $\{1,2,...,n\}$ with two colors there exists a monochromatic arithmetic progression of length $k$. Prove that
$W(k,2)=\Omega (2^{\frac{k}{2}})$.
1983 IMO Shortlist, 8
In a test, $3n$ students participate, who are located in three rows of $n$ students in each. The students leave the test room one by one. If $N_1(t), N_2(t), N_3(t)$ denote the numbers of students in the first, second, and third row respectively at time $t$, find the probability that for each t during the test,
\[|N_i(t) - N_j(t)| < 2, i \neq j, i, j = 1, 2, \dots .\]
2001 Miklós Schweitzer, 11
Let $\xi_{(k_1, k_2)}, k_1, k_2 \in\mathbb N$ be random variables uniformly bounded. Let $c_l, l\in\mathbb N$ be a positive real strictly increasing infinite sequence such that $c_{l+1}/ c_l$ is bounded. Let $d_l=\log \left(c_{l+1}/c_l\right), l\in\mathbb N$ and suppose that $D_n=\sum_{l=1}^n d_l\uparrow \infty$ when $n\to\infty$
Suppose there exist $C>0$ and $\varepsilon>0$ such that
$$\left| \mathbb E \left\{ \xi_{(k_1,k_2)}\xi_{(l_1,l_2)}\right\}\right| \leq C\prod_{i=1}^2 \left\{ \log_+\log_+\left( \frac{c_{\max\{ k_i, l_i\}}}{c_{\min\{ k_i, l_i\}}}\right)\right\}^{-(1+\varepsilon)}$$
for each $(k_1, k_2), (l_1,l_2)\in\mathbb N^2$ ($\log_+$ is the positive part of the natural logarithm). Show that
$$\lim_{\substack{n_1\to\infty \\ n_2\to\infty}} \frac{1}{D_{n_1}D_{n_2}}\sum_{k_1=1}^{n_1} \sum_{k_2=1}^{n_2} d_{k_1}d_{k_2}\xi_{(k_1,k_2)}=0$$
almost surely.
(translated by j___d)
2012 Kyoto University Entry Examination, 6
Cast a dice $n$ times. Denote by $X_1,\ X_2,\ \cdots ,\ X_n$ the numbers shown on each dice. Define $Y_1,\ Y_2,\ \cdots,\ Y_n$ by
\[Y_1=X_1,\ Y_k=X_k+\frac{1}{Y_{k-1}}\ (k=2,\ \cdots,\ n)\]
Find the probability $p_n$ such that $\frac{1+\sqrt{3}}{2}\leq Y_n\leq 1+\sqrt{3}.$
35 points
2011 Purple Comet Problems, 20
Points $A$ and $B$ are the endpoints of a diameter of a circle with center $C$. Points $D$ and $E$ lie on the same diameter so that $C$ bisects segment $\overline{DE}$. Let $F$ be a randomly chosen point within the circle. The probability that $\triangle DEF$ has a perimeter less than the length of the diameter of the circle is $\tfrac{17}{128}$. There are relatively prime positive integers m and n so that the ratio of $DE$ to $AB$ is $\tfrac{m}{n}.$ Find $m + n$.
1998 Harvard-MIT Mathematics Tournament, 10
In the fourth annual Swirled Series, the Oakland Alphas are playing the San Francisco Gammas. The first game is played in San Francisco and succeeding games alternate in location. San Francisco has a $50\%$ chance of winning their home games, while Oakland has a probability of $60\%$ of winning at home. Normally, the series will stretch on forever until one team gets a three game lead, in which case they are declared the winners. However, after each game in San Francisco there is a $50\%$ chance of an earthquake, which will cause the series to end with the team that has won more games declared the winner. What is the probability that the Gammas will win?
2021 Durer Math Competition Finals, 5
Joe, who is already feared by all bandits in the Wild West, would like to officially become a sheriff. To do that, he has to take a special exam where he has to demonstrate his talent in three different areas: tracking, shooting and lasso throwing. He successfully completes each task with a given probability, independently of each other. He passes the exam if he can complete at least two of the tasks successfully. Joe calculated that in case he starts with tracking and completes it successfully, his chance of passing the exam is $32\%$. If he starts with successful shooting, the chance of passing is $49\%$, whereas if he starts with successful lasso throwing, he passes with probability $52\%$.
The overall probability of passing (calculated before the start of the exam) is $X/1000$ . What is the value of $X$?
2014 BMT Spring, 5
Alice, Bob, and Chris each roll $4$ dice. Each only knows the result of their own roll. Alice claims that there are at least $5$ multiples of $3$ among the dice rolled. Bob has $1$ six and no threes, and knows that Alice wouldn’t claim such a thing unless he had at least $2$ multiples of $3$. Bob can call Alice a liar, or claim that there are at least $6$ multiples of $3$, but Chris says that he will immediately call Bob a liar if he makes this claim. Bob wins if he calls Alice a liar and there aren't at least $5$ multiples of $3$, or if he claims there are at least $6$ multiples of $3$, and there are. What is the probability that Bob loses no matter what he does?
2008 China Team Selection Test, 3
Let $ S$ be a set that contains $ n$ elements. Let $ A_{1},A_{2},\cdots,A_{k}$ be $ k$ distinct subsets of $ S$, where $ k\geq 2, |A_{i}| \equal{} a_{i}\geq 1 ( 1\leq i\leq k)$. Prove that the number of subsets of $ S$ that don't contain any $ A_{i} (1\leq i\leq k)$ is greater than or equal to $ 2^n\prod_{i \equal{} 1}^k(1 \minus{} \frac {1}{2^{a_{i}}}).$
2001 Stanford Mathematics Tournament, 12
A binary string is a string consisting of only 0’s and 1’s (for instance, 001010, 101, etc.). What is the probability that a randomly chosen binary string of length 10 has 2 consecutive 0’s? Express your answer as a fraction.
1979 IMO Shortlist, 2
From a bag containing 5 pairs of socks, each pair a different color, a random sample of 4 single socks is drawn. Any complete pairs in the sample are discarded and replaced by a new pair draw from the bag. The process continues until the bag is empty or there are 4 socks of different colors held outside the bag. What is the probability of the latter alternative?
2014 PUMaC Team, 10
A gambler has $\$25$ and each turn, if the gambler has a positive amount of money, a fair coin is flipped. If it is heads, the gambler gains a dollar and if it is tails, the gambler loses a dollar. But, if the gambler has no money, he will automatically be given a dollar (which counts as a turn). What is the expected number of turns for the gambler to double his money?
2019 PUMaC Combinatorics B, 3
Prinstan Trollner and Dukejukem are competing at the game show WASS. Both players spin a wheel which chooses an integer from $1$ to $50$ uniformly at random, and this number becomes their score. Dukejukem then flips a weighted coin that lands heads with probability $\tfrac{3}{5}$. If he flips heads, he adds $1$ to his score. A player wins the game if their score is higher than the other player's score. A player wins the game if their score is higher than the other player's score. The probability Dukejukem defeats the Trollner to win WASS equals $\tfrac{m}{n}$ where $m$ and $n$ are coprime positive integers. Computer $m+n$.
2016 Miklós Schweitzer, 9
For $p_0,\dots,p_d\in\mathbb{R}^d$, let
\[
S(p_0,\dots,p_d)=\left\{ \alpha_0p_0+\dots+\alpha_dp_d : \alpha_i\le 1, \sum_{i=0}^d \alpha_i =1 \right\}.
\]
Let $\pi$ be an arbitrary probability distribution on $\mathbb{R}^d$, and choose $p_0,\dots,p_d$ independently with distribution $\pi$. Prove that the expectation of $\pi(S(p_0,\dots,p_d))$ is at least $1/(d+2)$.
2018 Harvard-MIT Mathematics Tournament, 10
Let $S$ be a randomly chosen $6$-element subset of the set $\{0,1,2,\ldots,n\}.$ Consider the polynomial $P(x)=\sum_{i\in S}x^i.$ Let $X_n$ be the probability that $P(x)$ is divisible by some nonconstant polynomial $Q(x)$ of degree at most $3$ with integer coefficients satisfying $Q(0) \neq 0.$ Find the limit of $X_n$ as $n$ goes to infinity.
2008 Stanford Mathematics Tournament, 8
Terence Tao is playing rock-paper-scissors. Because his mental energy is focused on solving the twin primes conjecture, he uses the following very simple strategy:
·He plays rock first.
·On each subsequent turn, he plays a different move than the previous one, each with probability ½.
What is the probability that his 5th move will be rock?
2010 Princeton University Math Competition, 1
PUMaCDonalds, a newly-opened fast food restaurant, has 5 menu items. If the first 4 customers each choose one menu item at random, the probability that the 4th customer orders a previously unordered item is $m/n$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
1993 AMC 12/AHSME, 24
A box contains $3$ shiny pennies and $4$ dull pennies. One by one, pennies are drawn at random from the box and not replaced. If the probability is $\frac{a}{b}$ that it will take more than four draws until the third shiny penny appears and $\frac{a}{b}$ is in lowest terms, then $a+b=$
$ \textbf{(A)}\ 11 \qquad\textbf{(B)}\ 20 \qquad\textbf{(C)}\ 35 \qquad\textbf{(D)}\ 58 \qquad\textbf{(E)}\ 66 $
2007 ITest, 21
James writes down fifteen 1's in a row and randomly writes $+$ or $-$ between each pair of consecutive 1's. One such example is \[1+1+1-1-1+1-1+1-1+1-1-1-1+1+1.\] What is the probability that the value of the expression James wrote down is $7$?
$\begin{array}{@{\hspace{-1em}}l@{\hspace{14em}}l@{\hspace{14em}}l}
\textbf{(A) }0&\textbf{(B) }\dfrac{6435}{2^{14}}&\textbf{(C) }\dfrac{6435}{2^{13}}\\\\
\textbf{(D) }\dfrac{429}{2^{12}}&\textbf{(E) }\dfrac{429}{2^{11}}&\textbf{(F) }\dfrac{429}{2^{10}}\\\\
\textbf{(G) }\dfrac1{15}&\textbf{(H) } \dfrac1{31}&\textbf{(I) }\dfrac1{30}\\\\
\textbf{(J) }\dfrac1{29}&\textbf{(K) }\dfrac{1001}{2^{15}}&\textbf{(L) }\dfrac{1001}{2^{14}}\\\\
\textbf{(M) }\dfrac{1001}{2^{13}}&\textbf{(N) }\dfrac1{2^7}&\textbf{(O) }\dfrac1{2^{14}}\\\\
\textbf{(P) }\dfrac1{2^{15}}&\textbf{(Q) }\dfrac{2007}{2^{14}}&\textbf{(R) }\dfrac{2007}{2^{15}}\\\\
\textbf{(S) }\dfrac{2007}{2^{2007}}&\textbf{(T) }\dfrac1{2007}&\textbf{(U) }\dfrac{-2007}{2^{14}}\end{array}$
1980 Spain Mathematical Olympiad, 2
A ballot box contains the votes for the election of two candidates $A$ and $B$. It is known that candidate $A$ has $6$ votes and candidate $B$ has $9$. Find the probability that, when carrying out the scrutiny, candidate $B$ always goes first.
2008 Pre-Preparation Course Examination, 2
Seven points are selected randomly from $ S^1\subset\mathbb C$. What is the probability that origin is not contained in convex hull of these points?
2009 AMC 10, 23
Rachel and Robert run on a circular track. Rachel runs counterclockwise and completes a lap every $ 90$ seconds, and Robert runs clockwise and completes a lap every $ 80$ seconds. Both start from the start line at the same time. At some random time between $ 10$ minutes and $ 11$ minutes after they begin to run, a photographer standing inside the track takes a picture that shows one-fourth of the track, centered on the starting line. What is the probability that both Rachel and Robert are in the picture?
$ \textbf{(A)}\ \frac{1}{16}\qquad
\textbf{(B)}\ \frac18\qquad
\textbf{(C)}\ \frac{3}{16} \qquad
\textbf{(D)}\ \frac14\qquad
\textbf{(E)}\ \frac{5}{16}$
2019 Hong Kong TST, 2
A circle is circumscribed around an isosceles triangle whose two base angles are equal to $x^{\circ}$. Two points are chosen independently and randomly on the circle, and a chord is drawn between them. The probability that the chord intersects the triangle is $\frac{14}{25}.$ Find the sum of the largest and smallest possible value of $x$.