This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

2005 Kurschak Competition, 2

A and B play tennis. The player to first win at least four points and at least two more than the other player wins. We know that A gets a point each time with probability $p\le \frac12$, independent of the game so far. Prove that the probability that A wins is at most $2p^2$.

2008 VJIMC, Problem 4

We consider the following game for one person. The aim of the player is to reach a fixed capital $C>2$. The player begins with capital $0<x_0<C$. In each turn let $x$ be the player’s current capital. Define $s(x)$ as follows: $$s(x):=\begin{cases}x&\text{if }x<1\\C-x&\text{if }C-x<1\\1&\text{otherwise.}\end{cases}$$Then a fair coin is tossed and the player’s capital either increases or decreases by $s(x)$, each with probability $\frac12$. Find the probability that in a finite number of turns the player wins by reaching the capital $C$.