This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

KoMaL A Problems 2023/2024, A. 874

[i]Nyihaha[/i] and [i]Bruhaha[/i] are two neighbouring islands, both having $n$ inhabitants. On island [i]Nyihaha[/i] every inhabitant is either a Knight or a Knave. Knights always tell the truth and Knaves always lie. The inhabitants of island [i]Bruhaha[/i] are normal people, who can choose to tell the truth or lie. When a visitor arrives on any of the two islands, the following ritual is performed: every inhabitant points randomly to another inhabitant (indepently from each other with uniform distribution), and tells "He is a Knight" or "He is a Knave'". On sland [i]Nyihaha[/i], Knights have to tell the truth and Knaves have to lie. On island [i]Bruhaha[/i] every inhabitant tells the truth with probability $1/2$ independently from each other. Sinbad arrives on island [i]Bruhaha[/i], but he does not know whether he is on island [i]Nyihaha[/i] or island [i]Bruhaha[/i]. Let $p_n$ denote the probability that after observing the ritual he can rule out being on island [i]Nyihaha[/i]. Is it true that $p_n\to 1$ if $n\to\infty$? [i]Proposed by Dávid Matolcsi, Berkeley[/i]

2008 VJIMC, Problem 4

We consider the following game for one person. The aim of the player is to reach a fixed capital $C>2$. The player begins with capital $0<x_0<C$. In each turn let $x$ be the player’s current capital. Define $s(x)$ as follows: $$s(x):=\begin{cases}x&\text{if }x<1\\C-x&\text{if }C-x<1\\1&\text{otherwise.}\end{cases}$$Then a fair coin is tossed and the player’s capital either increases or decreases by $s(x)$, each with probability $\frac12$. Find the probability that in a finite number of turns the player wins by reaching the capital $C$.