This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

2016 Putnam, A5

Suppose that $G$ is a finite group generated by the two elements $g$ and $h,$ where the order of $g$ is odd. Show that every element of $G$ can be written in the form \[g^{m_1}h^{n_1}g^{m_2}h^{n_2}\cdots g^{m_r}h^{n_r}\] with $1\le r\le |G|$ and $m_n,n_1,m_2,n_2,\dots,m_r,n_r\in\{1,-1\}.$ (Here $|G|$ is the number of elements of $G.$)

2012 Putnam, 2

Let $*$ be a commutative and associative binary operation on a set $S.$ Assume that for every $x$ and $y$ in $S,$ there exists $z$ in $S$ such that $x*z=y.$ (This $z$ may depend on $x$ and $y.$) Show that if $a,b,c$ are in $S$ and $a*c=b*c,$ then $a=b.$