This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

2003 Putnam, 2

Let $a_1, a_2, \cdots , a_n$ and $b_1, b_2,\cdots, b_n$ be nonnegative real numbers. Show that \[(a_1a_2 \cdots a_n)^{1/n}+ (b_1b_2 \cdots b_n)^{1/n} \le ((a_1 + b_1)(a_2 + b_2) \cdots (a_n + b_n))^{1/n}\]

2000 Putnam, 1

Let $A$ be a positive real number. What are the possible values of $\displaystyle\sum_{j=0}^{\infty} x_j^2, $ given that $x_0, x_1, \cdots$ are positive numbers for which $\displaystyle\sum_{j=0}^{\infty} x_j = A$?