This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

ICMC 6, 3

The numbers $1, 2, \dots , n$ are written on a blackboard and then erased via the following process:[list] [*] Before any numbers are erased, a pair of numbers is chosen uniformly at random and circled. [*] Each minute for the next $n -1$ minutes, a pair of numbers still on the blackboard is chosen uniformly at random and the smaller one is erased. [*] In minute $n$, the last number is erased. [/list] What is the probability that the smaller circled number is erased before the larger? [i]Proposed by Ethan Tan[/i]