This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 16

2024 Mexico National Olympiad, 5

Tags: real , algebra
Let $A$ and $B$ infinite sets of positive real numbers such that: 1. For any pair of elements $u \ge v$ in $A$, it follows that $u+v$ is an element of $B$. 2. For any pair of elements $s>t$ in $B$, it follows that $s-t$ is an element of $A$. Prove that $A=B$ or there exists a real number $r$ such that $B=\{2r, 3r, 4r, 5r, \dots\}$.

2004 German National Olympiad, 1

Find all real numbers $x,y$ satisfying the following system of equations \begin{align*} x^4 +y^4 & =17(x+y)^2 \\ xy & =2(x+y). \end{align*}

2024 India Regional Mathematical Olympiad, 4

Let $a_1,a_2,a_3,a_4$ be real numbers such that $a_1^2 + a_2^2 + a_3^2 + a_4^2 = 1$. Show that there exist $i,j$ with $ 1 \leq i < j \leq 4$, such that $(a_i - a_j)^2 \leq \frac{1}{5}$.

2025 Kosovo National Mathematical Olympiad`, P2

Find all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ with the property that for every real numbers $x$ and $y$ it holds that $$f(x+yf(x+y))=f(x)+f(xy)+y^2.$$

1998 German National Olympiad, 6a

Find all real pairs $(x,y)$ that solve the system of equations \begin{align} x^5 &= 21x^3+y^3 \\ y^5 &= x^3+21y^3. \end{align}

2025 JBMO TST - Turkey, 8

Tags: combinatorics , real , arc
Pairwise distinct points $P_1,\dots,P_{1024}$, which lie on a circle, are marked by distinct reals $a_1,\dots,a_{1024}$. Let $P_i$ be $Q-$good for a $Q$ on the circle different than $P_1,\dots,P_{1024}$, if and only if $a_i$ is the greatest number on at least one of the two arcs $P_iQ$. Let the score of $Q$ be the number of $Q-$good points on the circle. Determine the greatest $k$ such that regardless of the values of $a_1,\dots,a_{1024}$, there exists a point $Q$ with score at least $k$.

2024 Pan-American Girls’ Mathematical Olympiad, 5

Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that $f(f(x+y) - f(x)) + f(x)f(y) = f(x^2) - f(x+y),$ for all real numbers $x, y$.

1975 Bundeswettbewerb Mathematik, 1

Let $a, b, c, d$ be distinct positive real numbers. Prove that if one of the numbers $c, d$ lies between $a$ and $b$, or one of $a, b$ lies between $c$ and $d$, then $$\sqrt{(a+b)(c+d)} >\sqrt{ab} +\sqrt{cd}$$ and that otherwise, one can choose $a, b, c, d$ so that this inequality is false.

2009 Middle European Mathematical Olympiad, 1

Find all functions $ f: \mathbb{R} \to \mathbb{R}$, such that \[ f(xf(y)) \plus{} f(f(x) \plus{} f(y)) \equal{} yf(x) \plus{} f(x \plus{} f(y))\] holds for all $ x$, $ y \in \mathbb{R}$, where $ \mathbb{R}$ denotes the set of real numbers.

1996 Tuymaada Olympiad, 2

Tags: algebra , set , real , set theory
Given a finite set of real numbers $A$, not containing $0$ and $1$ and possessing the property: if the number a belongs to $A$, then numbers $\frac{1}{a}$ and $1-a$ also belong to $A$. How many numbers are in the set $A$?

2020 Hong Kong TST, 4

Find all real-valued functions $f$ defined on the set of real numbers such that $$f(f(x)+y)+f(x+f(y))=2f(xf(y))$$ for any real numbers $x$ and $y$.

2014 Middle European Mathematical Olympiad, 1

Determine all functions $f:\mathbb{R} \to \mathbb{R}$ such that \[ xf(y) + f(xf(y)) - xf(f(y)) - f(xy) = 2x + f(y) - f(x+y)\] holds for all $x,y \in \mathbb{R}$.

2022 Middle European Mathematical Olympiad, 1

Find all functions $f: \mathbb R \to \mathbb R$ such that $$f(x+f(x+y))=x+f(f(x)+y)$$ holds for all real numbers $x$ and $y$.

2019 Kosovo Team Selection Test, 2

Determine all functions $f:\mathbb{R} \rightarrow \mathbb{R}$ such that for every $x,y \in \mathbb{R}$ $$f(x^{4}-y^{4})+4f(xy)^{2}=f(x^{4}+y^{4})$$

2024-IMOC, A7

Tags: function , algebra , real
Given positive integers $n$, $P_1$, $P_2$, …$P_n$ and two sets \[B=\{ (a_1,a_2,…,a_n)|a_i=0 \vee 1,\ \forall i \in \mathbb{N} \}, S=\{ (x_1,x_2,…,x_n)|1 \leq x_i \leq P_i \wedge x_i \in \mathbb{N} ,\ \forall i \in \mathbb{N} \}\] A function $f:S \to \mathbb{Z}$ is called [b]Real[/b], if and only if for any positive integers $(y_1,y_2,…,y_n)$ and positive integer $a$ which satisfied $ 1 \leq y_i \leq P_i-a$ $\forall i \in \mathbb{N}$, we always have: \begin{align*} \sum_{(a_1,a_2,…,a_n) \in B \wedge 2| \sum_{i=1}^na_i}f(y+a \times a_1,y+a \times a_2,……,y+a \times a_n)&>\\ \sum_{(a_1,a_2,…,a_n) \in B \wedge 2 \nmid \sum_{i=1}^na_i}f(y+a \times a_1,y+a \times a_2,……,y+a \times a_n)&. \end{align*} Find the minimum of $\sum_{i_1=1}^{P_1}\sum_{i_2=1}^{P_2}....\sum_{i_n=1}^{P_n}|f(i_1,i_2,...,i_n)|$, where $f$ is a [b]Real[/b] function. [i]Proposed by tob8y[/i]

2014 Contests, 1

Determine all functions $f:\mathbb{R} \to \mathbb{R}$ such that \[ xf(y) + f(xf(y)) - xf(f(y)) - f(xy) = 2x + f(y) - f(x+y)\] holds for all $x,y \in \mathbb{R}$.