Found problems: 16
2024 Mexico National Olympiad, 5
Let $A$ and $B$ infinite sets of positive real numbers such that:
1. For any pair of elements $u \ge v$ in $A$, it follows that $u+v$ is an element of $B$.
2. For any pair of elements $s>t$ in $B$, it follows that $s-t$ is an element of $A$.
Prove that $A=B$ or there exists a real number $r$ such that $B=\{2r, 3r, 4r, 5r, \dots\}$.
2004 German National Olympiad, 1
Find all real numbers $x,y$ satisfying the following system of equations
\begin{align*}
x^4 +y^4 & =17(x+y)^2 \\
xy & =2(x+y).
\end{align*}
2024 India Regional Mathematical Olympiad, 4
Let $a_1,a_2,a_3,a_4$ be real numbers such that $a_1^2 + a_2^2 + a_3^2 + a_4^2 = 1$. Show that there exist $i,j$ with $ 1 \leq i < j \leq 4$, such that $(a_i - a_j)^2 \leq \frac{1}{5}$.
2025 Kosovo National Mathematical Olympiad`, P2
Find all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ with the property that for every real numbers $x$ and $y$ it holds that
$$f(x+yf(x+y))=f(x)+f(xy)+y^2.$$
1998 German National Olympiad, 6a
Find all real pairs $(x,y)$ that solve the system of equations \begin{align} x^5 &= 21x^3+y^3
\\ y^5 &= x^3+21y^3. \end{align}
2025 JBMO TST - Turkey, 8
Pairwise distinct points $P_1,\dots,P_{1024}$, which lie on a circle, are marked by distinct reals $a_1,\dots,a_{1024}$. Let $P_i$ be $Q-$good for a $Q$ on the circle different than $P_1,\dots,P_{1024}$, if and only if $a_i$ is the greatest number on at least one of the two arcs $P_iQ$. Let the score of $Q$ be the number of $Q-$good points on the circle. Determine the greatest $k$ such that regardless of the values of $a_1,\dots,a_{1024}$, there exists a point $Q$ with score at least $k$.
2024 Pan-American Girls’ Mathematical Olympiad, 5
Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that
$f(f(x+y) - f(x)) + f(x)f(y) = f(x^2) - f(x+y),$
for all real numbers $x, y$.
1975 Bundeswettbewerb Mathematik, 1
Let $a, b, c, d$ be distinct positive real numbers. Prove that if one of the numbers $c, d$ lies between $a$ and $b$, or one of $a, b$ lies between $c$ and $d$, then
$$\sqrt{(a+b)(c+d)} >\sqrt{ab} +\sqrt{cd}$$
and that otherwise, one can choose $a, b, c, d$ so that this inequality is false.
2009 Middle European Mathematical Olympiad, 1
Find all functions $ f: \mathbb{R} \to \mathbb{R}$, such that
\[ f(xf(y)) \plus{} f(f(x) \plus{} f(y)) \equal{} yf(x) \plus{} f(x \plus{} f(y))\]
holds for all $ x$, $ y \in \mathbb{R}$, where $ \mathbb{R}$ denotes the set of real numbers.
1996 Tuymaada Olympiad, 2
Given a finite set of real numbers $A$, not containing $0$ and $1$ and possessing the property: if the number a belongs to $A$, then numbers $\frac{1}{a}$ and $1-a$ also belong to $A$. How many numbers are in the set $A$?
2020 Hong Kong TST, 4
Find all real-valued functions $f$ defined on the set of real numbers such that $$f(f(x)+y)+f(x+f(y))=2f(xf(y))$$ for any real numbers $x$ and $y$.
2014 Middle European Mathematical Olympiad, 1
Determine all functions $f:\mathbb{R} \to \mathbb{R}$ such that
\[ xf(y) + f(xf(y)) - xf(f(y)) - f(xy) = 2x + f(y) - f(x+y)\]
holds for all $x,y \in \mathbb{R}$.
2022 Middle European Mathematical Olympiad, 1
Find all functions $f: \mathbb R \to \mathbb R$ such that $$f(x+f(x+y))=x+f(f(x)+y)$$ holds for all real numbers $x$ and $y$.
2019 Kosovo Team Selection Test, 2
Determine all functions $f:\mathbb{R} \rightarrow \mathbb{R}$ such that for every $x,y \in \mathbb{R}$
$$f(x^{4}-y^{4})+4f(xy)^{2}=f(x^{4}+y^{4})$$
2024-IMOC, A7
Given positive integers $n$, $P_1$, $P_2$, …$P_n$ and two sets
\[B=\{ (a_1,a_2,…,a_n)|a_i=0 \vee 1,\ \forall i \in \mathbb{N} \}, S=\{ (x_1,x_2,…,x_n)|1 \leq x_i \leq P_i \wedge x_i \in \mathbb{N} ,\ \forall i \in \mathbb{N} \}\]
A function $f:S \to \mathbb{Z}$ is called [b]Real[/b], if and only if for any positive integers $(y_1,y_2,…,y_n)$ and positive integer $a$ which satisfied $ 1 \leq y_i \leq P_i-a$ $\forall i \in \mathbb{N}$, we always have:
\begin{align*}
\sum_{(a_1,a_2,…,a_n) \in B \wedge 2| \sum_{i=1}^na_i}f(y+a \times a_1,y+a \times a_2,……,y+a \times a_n)&>\\
\sum_{(a_1,a_2,…,a_n) \in B \wedge 2 \nmid \sum_{i=1}^na_i}f(y+a \times a_1,y+a \times a_2,……,y+a \times a_n)&.
\end{align*}
Find the minimum of $\sum_{i_1=1}^{P_1}\sum_{i_2=1}^{P_2}....\sum_{i_n=1}^{P_n}|f(i_1,i_2,...,i_n)|$, where $f$ is a [b]Real[/b] function.
[i]Proposed by tob8y[/i]
2014 Contests, 1
Determine all functions $f:\mathbb{R} \to \mathbb{R}$ such that
\[ xf(y) + f(xf(y)) - xf(f(y)) - f(xy) = 2x + f(y) - f(x+y)\]
holds for all $x,y \in \mathbb{R}$.