This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 34

2013 German National Olympiad, 6

Define a sequence $(a_n)$ by $a_1 =1, a_2 =2,$ and $a_{k+2}=2a_{k+1}+a_k$ for all positive integers $k$. Determine all real numbers $\beta >0$ which satisfy the following conditions: (A) There are infinitely pairs of positive integers $(p,q)$ such that $\left| \frac{p}{q}- \sqrt{2} \, \right| < \frac{\beta}{q^2 }.$ (B) There are only finitely many pairs of positive integers $(p,q)$ with $\left| \frac{p}{q}- \sqrt{2} \,\right| < \frac{\beta}{q^2 }$ for which there is no index $k$ with $q=a_k.$

2017 Bosnia And Herzegovina - Regional Olympiad, 1

Let $a$, $b$ and $c$ be real numbers such that $abc(a+b)(b+c)(c+a)\neq0$ and $(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1007}{1008}$ Prove that $\frac{ab}{(a+c)(b+c)}+\frac{bc}{(b+a)(c+a)}+\frac{ca}{(c+b)(a+b)}=2017$

2023 OMpD, 4

Are there integers $m, n \geq 2$ such that the following property is always true? $$``\text{For any real numbers } x, y, \text{ if } x^m + y^m \text{ and } x^n + y^n \text{ are integers, then } x + y \text{ is an integer}".$$

2007 German National Olympiad, 1

Determine all real numbers $x$ such that for all positive integers $n$ the inequality $(1+x)^n \leq 1+(2^n -1)x$ is true.

2003 Bosnia and Herzegovina Team Selection Test, 6

Let $a$, $b$ and $c$ be real numbers such that $\mid a \mid >2$ and $a^2+b^2+c^2=abc+4$. Prove that numbers $x$ and $y$ exist such that $a=x+\frac{1}{x}$, $b=y+\frac{1}{y}$ and $c=xy+\frac{1}{xy}$.

2025 India National Olympiad, P4

Let $n\ge 3$ be a positive integer. Find the largest real number $t_n$ as a function of $n$ such that the inequality \[\max\left(|a_1+a_2|, |a_2+a_3|, \dots ,|a_{n-1}+a_{n}| , |a_n+a_1|\right) \ge t_n \cdot \max(|a_1|,|a_2|, \dots ,|a_n|)\] holds for all real numbers $a_1, a_2, \dots , a_n$ . [i]Proposed by Rohan Goyal and Rijul Saini[/i]

2015 Germany Team Selection Test, 1

Find the least positive integer $n$, such that there is a polynomial \[ P(x) = a_{2n}x^{2n}+a_{2n-1}x^{2n-1}+\dots+a_1x+a_0 \] with real coefficients that satisfies both of the following properties: - For $i=0,1,\dots,2n$ it is $2014 \leq a_i \leq 2015$. - There is a real number $\xi$ with $P(\xi)=0$.

2020 Bulgaria EGMO TST, 3

Ana has an iron material of mass $20.2$ kg. She asks Bilyana to make $n$ weights to be used in a classical weighning scale with two plates. Bilyana agrees under the condition that each of the $n$ weights is at least $10$ g. Determine the smallest possible value of $n$ for which Ana would always be able to determine the mass of any material (the mass can be any real number between $0$ and $20.2$ kg) with an error of at most $10$ g.

2020 OMpD, 4

Let $\mathbb{R}^+$ the set of positive real numbers. Determine all the functions $f, g: \mathbb{R}^+ \rightarrow \mathbb{R}^+$ such that, for all positive real numbers $x, y$ we have that $$f(x + g(y)) = f(x + y) + g(y) \text{ and } g(x + f(y)) = g(x + y) + f(y)$$