This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 117

Russian TST 2018, P1

Tags: polynomial , root , algebra
Let $f(x) = x^2 + 2018x + 1$. Let $f_1(x)=f(x)$ and $f_k(x)=f(f_{k-1}(x))$ for all $k\geqslant 2$. Prove that for any positive integer $n{}$, the equation $f_n(x)=0$ has at least two distinct real roots.

1999 Bosnia and Herzegovina Team Selection Test, 1

Let $a$, $b$ and $c$ be lengths of sides of triangle $ABC$. Prove that at least one of the equations $$x^2-2bx+2ac=0$$ $$x^2-2cx+2ab=0$$ $$x^2-2ax+2bc=0$$ does not have real solutions

2010 Hanoi Open Mathematics Competitions, 7

Determine all positive integer $a$ such that the equation $2x^2 - 30x + a = 0$ has two prime roots, i.e. both roots are prime numbers.

1966 IMO Shortlist, 48

For which real numbers $p$ does the equation $x^{2}+px+3p=0$ have integer solutions ?

2016 CentroAmerican, 3

Tags: algebra , polynomial , root
The polynomial $Q(x)=x^3-21x+35$ has three different real roots. Find real numbers $a$ and $b$ such that the polynomial $x^2+ax+b$ cyclically permutes the roots of $Q$, that is, if $r$, $s$ and $t$ are the roots of $Q$ (in some order) then $P(r)=s$, $P(s)=t$ and $P(t)=r$.

2013 Hanoi Open Mathematics Competitions, 12

If $f(x) = ax^2 + bx + c$ satisfies the condition $|f(x)| < 1; \forall x \in [-1, 1]$, prove that the equation $f(x) = 2x^2 - 1$ has two real roots.

2016 Junior Regional Olympiad - FBH, 2

Tags: root , algebra
If $$w=\sqrt{1+\sqrt{-3+2\sqrt{3}}}-\sqrt{1-\sqrt{-3+2\sqrt{3}}}$$ prove that $w=\sqrt{3}-1$

1955 Moscow Mathematical Olympiad, 314

Tags: polynomial , root , algebra
Prove that the equation $x^n - a_1x^{n-1} - a_2x^{n-2} - ... -a_{n-1}x - a_n = 0$, where $a_1 \ge 0, a_2 \ge 0, . . . , a_n \ge 0$, cannot have two positive roots.

2015 Israel National Olympiad, 3

Tags: algebra , root , cube roots
Prove that the number $\left(\frac{76}{\frac{1}{\sqrt[3]{77}-\sqrt[3]{75}}-\sqrt[3]{5775}}+\frac{1}{\frac{76}{\sqrt[3]{77}+\sqrt[3]{75}}+\sqrt[3]{5775}}\right)^3$ is an integer.

1976 IMO, 2

Let $P_{1}(x)=x^{2}-2$ and $P_{j}(x)=P_{1}(P_{j-1}(x))$ for j$=2,\ldots$ Prove that for any positive integer n the roots of the equation $P_{n}(x)=x$ are all real and distinct.

2018 Middle European Mathematical Olympiad, 2

Tags: algebra , polynomial , root
Let $P(x)$ be a polynomial of degree $n\geq 2$ with rational coefficients such that $P(x) $ has $ n$ pairwise different reel roots forming an arithmetic progression .Prove that among the roots of $P(x) $ there are two that are also the roots of some polynomial of degree $2$ with rational coefficients .

1971 IMO Shortlist, 8

Determine whether there exist distinct real numbers $a, b, c, t$ for which: [i](i)[/i] the equation $ax^2 + btx + c = 0$ has two distinct real roots $x_1, x_2,$ [i](ii)[/i] the equation $bx^2 + ctx + a = 0$ has two distinct real roots $x_2, x_3,$ [i](iii)[/i] the equation $cx^2 + atx + b = 0$ has two distinct real roots $x_3, x_1.$

1968 Vietnam National Olympiad, 1

Let $a$ and $b$ satisfy $a \ge b >0, a + b = 1$. i) Prove that if $m$ and $n$ are positive integers with $m < n$, then $a^m - a^n \ge b^m- b^n > 0$. ii) For each positive integer $n$, consider a quadratic function $f_n(x) = x^2 - b^nx- a^n$. Show that $f(x)$ has two roots that are in between $-1$ and $1$.

2001 Saint Petersburg Mathematical Olympiad, 9.2

Define a quadratic trinomial to be "good", if it has two distinct real roots and all of its coefficients are distinct. Do there exist 10 positive integers such that there exist 500 good quadratic trinomials coefficients of which are among these numbers? [I]Proposed by F. Petrov[/i]

2014 India PRMO, 6

What is the smallest possible natural number $n$ for which the equation $x^2 -nx + 2014 = 0$ has integer roots?

2013 Saudi Arabia BMO TST, 5

Tags: polynomial , root , algebra
Let $k$ be a real number such that the product of real roots of the equation $$X^4 + 2X^3 + (2 + 2k)X^2 + (1 + 2k)X + 2k = 0$$ is $-2013$. Find the sum of the squares of these real roots.

1953 Moscow Mathematical Olympiad, 253

Given the equations (1) $ax^2 + bx + c = 0$ (2)$ -ax^2 + bx + c = 0$ prove that if $x_1$ and $x_2$ are some roots of equations (1) and (2), respectively, then there is a root $x_3$ of the equation $$\frac{a}{2}x^2 + bx + c = 0$$ such that either $x_1 \le x_3 \le x_2$ or $x_1 \ge x_3 \ge x_2$.

2015 Germany Team Selection Test, 1

Find the least positive integer $n$, such that there is a polynomial \[ P(x) = a_{2n}x^{2n}+a_{2n-1}x^{2n-1}+\dots+a_1x+a_0 \] with real coefficients that satisfies both of the following properties: - For $i=0,1,\dots,2n$ it is $2014 \leq a_i \leq 2015$. - There is a real number $\xi$ with $P(\xi)=0$.

1967 IMO Shortlist, 2

The equation \[x^5 + 5 \lambda x^4 - x^3 + (\lambda \alpha - 4)x^2 - (8 \lambda + 3)x + \lambda \alpha - 2 = 0\] is given. Determine $\alpha$ so that the given equation has exactly (i) one root or (ii) two roots, respectively, independent from $\lambda.$

1949 Putnam, A5

Tags: root
How many roots of the equation $z^6 +6z +10=0$ lie in each quadrant of the complex plane?

1953 Putnam, B5

Tags: polynomial , root
Show that the roots of $x^4 +ax^3 +bx^2 +cx +d$, if suitably numbered, satisfy the relation $\frac{r_1 }{r_2 } = \frac{ r_3 }{r _4},$ provided $a^2 d=c^2 \ne 0.$

2012 Dutch BxMO/EGMO TST, 1

Do there exist quadratic polynomials $P(x)$ and $Q(x)$ with real coeffcients such that the polynomial $P(Q(x))$ has precisely the zeros $x = 2, x = 3, x =5$ and $x = 7$?

2016 India PRMO, 9

Tags: algebra , trinomial , root
Let $a$ and $b$ be the roots of the equation $x^2 + x - 3 = 0$. Find the value of the expression $4 b^2 -a^3$.

2025 Greece National Olympiad, 1

Let $P(x)=x^4+5x^3+mx^2+5nx+4$ have $2$ distinct real roots, which sum up to $-5$. If $m,n \in \mathbb {Z_+}$, find the values of $m,n$ and their corresponding roots.

1967 IMO Shortlist, 1

Determine all positive roots of the equation $ x^x = \frac{1}{\sqrt{2}}.$