This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 5

1982 IMO Longlists, 17

[b](a)[/b] Find the rearrangement $\{a_1, \dots , a_n\}$ of $\{1, 2, \dots, n\}$ that maximizes \[a_1a_2 + a_2a_3 + \cdots + a_na_1 = Q.\] [b](b)[/b] Find the rearrangement that minimizes $Q.$

2024 Australian Mathematical Olympiad, P3

Let $a_1, a_2, \ldots, a_n$ be positive reals for $n \geq 2$. For a permutation $(b_1, b_2, \ldots, b_n)$ of $(a_1, a_2, \ldots, a_n)$, define its $\textit{score}$ to be $$\sum_{i=1}^{n-1}\frac{b_i^2}{b_{i+1}}.$$ Show that some two permutations of $(a_1, a_2, \ldots, a_n)$ have scores that differ by at most $3|a_1-a_n|$.

1982 IMO Longlists, 4

[b](a)[/b] Find the rearrangement $\{a_1, \dots , a_n\}$ of $\{1, 2, \dots, n\}$ that maximizes \[a_1a_2 + a_2a_3 + \cdots + a_na_1 = Q.\] [b](b)[/b] Find the rearrangement that minimizes $Q.$

2013 Baltic Way, 1

Let $n$ be a positive integer. Assume that $n$ numbers are to be chosen from the table $\begin{array}{cccc}0 & 1 & \cdots & n-1\\ n & n+1 & \cdots & 2n-1\\ \vdots & \vdots & \ddots & \vdots\\(n-1)n & (n-1)n+1 & \cdots & n^2-1\end{array} $ with no two of them from the same row or the same column. Find the maximal value of the product of these $n$ numbers.

1982 IMO Shortlist, 11

[b](a)[/b] Find the rearrangement $\{a_1, \dots , a_n\}$ of $\{1, 2, \dots, n\}$ that maximizes \[a_1a_2 + a_2a_3 + \cdots + a_na_1 = Q.\] [b](b)[/b] Find the rearrangement that minimizes $Q.$