This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 33

2006 QEDMO 3rd, 10

Define a sequence $\left( a_{n}\right) _{n\in\mathbb{N}}$ by $a_{1}=a_{2}=a_{3}=1$ and $a_{n+1}=\dfrac{a_{n}^{2}+a_{n-1}^{2}}{a_{n-2}}$ for every integer $n\geq3$. Show that all elements $a_{i}$ of this sequence are integers. (L. J. Mordell and apparently Dana Scott, see also http://oeis.org/A064098)

2015 Postal Coaching, 4

The sequence $<a_n>$ is defined as follows, $a_1=a_2=1$, $a_3=2$, $$a_{n+3}=\frac{a_{n+2}a_{n+1}+n!}{a_n},$$ $n \ge 1$. Prove that all the terms in the sequence are integers.

2024 Bulgarian Winter Tournament, 9.4

There are $11$ points equally spaced on a circle. Some of the segments having endpoints among these vertices are drawn and colored in two colors, so that each segment meets at an internal for it point at most one other segment from the same color. What is the greatest number of segments that could be drawn?

2025 India National Olympiad, P1

Consider the sequence defined by \(a_1 = 2\), \(a_2 = 3\), and \[ a_{2k+1} = 2 + 2a_k, \quad a_{2k+2} = 2 + a_k + a_{k+1}, \] for all integers \(k \geq 1\). Determine all positive integers \(n\) such that \[ \frac{a_n}{n} \] is an integer. Proposed by Niranjan Balachandran, SS Krishnan, and Prithwijit De.

1978 Putnam, B3

The sequence $(Q_{n}(x))$ of polynomials is defined by $$Q_{1}(x)=1+x ,\; Q_{2}(x)=1+2x,$$ and for $m \geq 1 $ by $$Q_{2m+1}(x)= Q_{2m}(x) +(m+1)x Q_{2m-1}(x),$$ $$Q_{2m+2}(x)= Q_{2m+1}(x) +(m+1)x Q_{2m}(x).$$ Let $x_n$ be the largest real root of $Q_{n}(x).$ Prove that $(x_n )$ is an increasing sequence and that $\lim_{n\to \infty} x_n =0.$

2013 Iran MO (2nd Round), 3

Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of positive integers for which \[ a_{n+2} = \left[\frac{2a_n}{a_{n+1}}\right]+\left[\frac{2a_{n+1}}{a_n}\right]. \] Prove that there exists a positive integer $m$ such that $a_m=4$ and $a_{m+1} \in\{3,4\}$. [b]Note.[/b] $[x]$ is the greatest integer not exceeding $x$.

2025 NEPALTST, 1

Let the sequence $\{a_n\}_{n \geq 1}$ be defined by \[ a_1 = 1, \quad a_{n+1} = a_n + \frac{1}{\sqrt[2024]{a_n}} \quad \text{for } n \geq 1, \, n \in \mathbb{N} \] Prove that \[ a_n^{2025} >n^{2024} \] for all positive integers $n \geq 2$. $\textbf{Proposed by Prajit Adhikari, Nepal.}$

2015 Romania Team Selection Tests, 2

Let $(a_n)_{n \geq 0}$ and $(b_n)_{n \geq 0}$ be sequences of real numbers such that $ a_0>\frac{1}{2}$ , $a_{n+1} \geq a_n$ and $b_{n+1}=a_n(b_n+b_{n+2})$ for all non-negative integers $n$ . Show that the sequence $(b_n)_{n \geq 0}$ is bounded .