This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 307

1985 IMO Longlists, 33

A sequence of polynomials $P_m(x, y, z), m = 0, 1, 2, \cdots$, in $x, y$, and $z$ is defined by $P_0(x, y, z) = 1$ and by \[P_m(x, y, z) = (x + z)(y + z)P_{m-1}(x, y, z + 1) - z^2P_{m-1}(x, y, z)\] for $m > 0$. Prove that each $P_m(x, y, z)$ is symmetric, in other words, is unaltered by any permutation of $x, y, z.$

2021 Dutch IMO TST, 1

The sequence of positive integers $a_0, a_1, a_2, . . .$ is defined by $a_0 = 3$ and $$a_{n+1} - a_n = n(a_n - 1)$$ for all $n \ge 0$. Determine all integers $m \ge 2$ for which $gcd (m, a_n) = 1$ for all $n \ge 0$.

2017 Grand Duchy of Lithuania, 1

The infinite sequence $a_0, a_1, a_2, a_3,... $ is defined by $a_0 = 2$ and $$a_n =\frac{2a_{n-1} + 1}{a_{n-1} + 2}$$ , $n = 1, 2, 3, ...$ Prove that $1 < a_n < 1 + \frac{1}{3^n}$ for all $n = 1, 2, 3, . .$

2005 VJIMC, Problem 4

Let $(x_n)_{n\ge2}$ be a sequence of real numbers such that $x_2>0$ and $x_{n+1}=-1+\sqrt[n]{1+nx_n}$ for $n\ge2$. Find (a) $\lim_{n\to\infty}x_n$, (b) $\lim_{n\to\infty}nx_n$.

2014 Costa Rica - Final Round, 6

The sequences $a_n$, $b_n$ and $c_n$ are defined recursively in the following way: $a_0 = 1/6$, $b_0 = 1/2$, $c_0 = 1/3,$ $$a_{n+1}= \frac{(a_n + b_n)(a_n + c_n)}{(a_n - b_n)(a_n - c_n)},\,\, b_{n+1}= \frac{(b_n + a_n)(b_n + c_n)}{(b_n - a_n)(b_n - c_n)},\,\, c_{n+1}= \frac{(c_n + a_n)(c_n + b_n)}{(c_n - a_n)(c_n - b_n)}$$ For each natural number $N$, the following polynomials are defined: $A_n(x) =a_o+a_1 x+ ...+ a_{2N}x^{2N}$ $B_n(x) =b_o+a_1 x+ ...+ a_{2N}x^{2N}$ $C_n(x) =a_o+a_1 x+ ...+ a_{2N}x^{2N}$ Assume the sequences are well defined. Show that there is no real $c$ such that $A_N(c) = B_N(c) = C_N(c) = 0$.

2015 Balkan MO Shortlist, N2

Sequence $(a_n)_{n\geq 0}$ is defined as $a_{0}=0, a_1=1, a_2=2, a_3=6$, and $ a_{n+4}=2a_{n+3}+a_{n+2}-2a_{n+1}-a_n, n\geq 0$. Prove that $n^2$ divides $a_n$ for infinite $n$. (Romania)

1976 IMO, 3

A sequence $(u_{n})$ is defined by \[ u_{0}=2 \quad u_{1}=\frac{5}{2}, u_{n+1}=u_{n}(u_{n-1}^{2}-2)-u_{1} \quad \textnormal{for } n=1,\ldots \] Prove that for any positive integer $n$ we have \[ [u_{n}]=2^{\frac{(2^{n}-(-1)^{n})}{3}} \](where $[x]$ denotes the smallest integer $\leq x)$