This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 837

2007 Today's Calculation Of Integral, 186

For $a>0,$ find $\lim_{a\to\infty}a^{-\left(\frac{3}{2}+n\right) }\int_{0}^{a}x^{n}\sqrt{1+x}\ dx\ (n=1,\ 2,\ \cdots).$

2011 Today's Calculation Of Integral, 677

Let $a,\ b$ be positive real numbers with $a<b$. Define the definite integrals $I_1,\ I_2,\ I_3$ by $I_1=\int_a^b \sin\ (x^2)\ dx,\ I_2=\int_a^b \frac{\cos\ (x^2)}{x^2}\ dx,\ I_3=\int_a^b \frac{\sin\ (x^2)}{x^4}\ dx$. (1) Find the value of $I_1+\frac 12I_2$ in terms of $a,\ b$. (2) Find the value of $I_2-\frac 32I_3$ in terms of $a,\ b$. (3) For a positive integer $n$, define $K_n=\int_{\sqrt{2n\pi}}^{\sqrt{2(n+1)\pi}} \sin\ (x^2)\ dx+\frac 34\int_{\sqrt{2n\pi}}^{\sqrt{2(n+1)\pi}}\frac{\sin\ (x^2)}{x^4}\ dx$. Find the value of $\lim_{n\to\infty} 2n\pi \sqrt{2n\pi} K_n$. [i]2011 Tokyo University of Science entrance exam/Information Sciences, Applied Chemistry, Mechanical Enginerring, Civil Enginerring[/i]

2012 Today's Calculation Of Integral, 808

For a constant $c$, a sequence $a_n$ is defined by $a_n=\int_c^1 nx^{n-1}\left(\ln \left(\frac{1}{x}\right)\right)^n dx\ (n=1,\ 2,\ 3,\ \cdots).$ Find $\lim_{n\to\infty} a_n$.

1978 Miklós Schweitzer, 4

Let $ \mathbb{Q}$ and $ \mathbb{R}$ be the set of rational numbers and the set of real numbers, respectively, and let $ f : \mathbb{Q} \rightarrow \mathbb{R}$ be a function with the following property. For every $ h \in \mathbb{Q} , \;x_0 \in \mathbb{R}$, \[ f(x\plus{}h)\minus{}f(x) \rightarrow 0\] as $ x \in \mathbb{Q}$ tends to $ x_0$. Does it follow that $ f$ is bounded on some interval? [i]M. Laczkovich[/i]

2007 District Olympiad, 1

Let $a_1\in (0,1)$ and $(a_n)_{n\ge 1}$ a sequence of real numbers defined by $a_{n+1}=a_n(1-a_n^2),\ (\forall)n\ge 1$. Evaluate $\lim_{n\to \infty} a_n\sqrt{n}$.

2008 Moldova National Olympiad, 12.6

Find $ \lim_{n\to\infty}a_n$ where $ (a_n)_{n\ge1}$ is defined by $ a_n\equal{}\frac1{\sqrt{n^2\plus{}8n\minus{}1}}\plus{}\frac1{\sqrt{n^2\plus{}16n\minus{}1}}\plus{}\frac1{\sqrt{n^2\plus{}24n\minus{}1}}\plus{}\ldots\plus{}\frac1{\sqrt{9n^2\minus{}1}}$.

Today's calculation of integrals, 765

Define two functions $g(x),\ f(x)\ (x\geq 0)$ by $g(x)=\int_0^x e^{-t^2}dt,\ f(x)=\int_0^1 \frac{e^{-(1+s^2)x}}{1+s^2}ds.$ Now we know that $f'(x)=-\int_0^1 e^{-(1+s^2)x}ds.$ (1) Find $f(0).$ (2) Show that $f(x)\leq \frac{\pi}{4}e^{-x}\ (x\geq 0).$ (3) Let $h(x)=\{g(\sqrt{x})\}^2$. Show that $f'(x)=-h'(x).$ (4) Find $\lim_{x\rightarrow +\infty} g(x)$ Please solve the problem without using Double Integral or Jacobian for those Japanese High School Students who don't study them.

2004 Unirea, 4

Let be a real number $ a\in (0,1) $ and a function $ f:\mathbb{R}\longrightarrow\mathbb{R} $ with the property that: $$ \lim_{x\to 0} f(x) =0= \lim_{x\to 0} \frac{f(x)-f(ax)}{x} $$ Prove that $ \lim_{x\to\infty } \frac{f(x)}{x} =0. $

2010 Putnam, B1

Is there an infinite sequence of real numbers $a_1,a_2,a_3,\dots$ such that \[a_1^m+a_2^m+a_3^m+\cdots=m\] for every positive integer $m?$

2009 Today's Calculation Of Integral, 482

Let $ n$ be natural number. Find the limit value of ${ \lim_{n\to\infty} \frac{1}{n}(\frac{1}{\sqrt{2}}+\frac{2}{\sqrt{5}}}+\cdots\cdots +\frac{n}{\sqrt{n^2+1}}).$

2014 BMT Spring, 9

Find $\alpha$ such that $$\lim_{x\to0^+}x^\alpha I(x)=a\enspace\text{given}\enspace I(x)=\int^\infty_0\sqrt{1+t}\cdot e^{-xt}dt$$ where $a$ is a nonzero real number.

2001 China National Olympiad, 3

Let $a=2001$. Consider the set $A$ of all pairs of integers $(m,n)$ with $n\neq0$ such that (i) $m<2a$; (ii) $2n|(2am-m^2+n^2)$; (iii) $n^2-m^2+2mn\leq2a(n-m)$. For $(m, n)\in A$, let \[f(m,n)=\frac{2am-m^2-mn}{n}.\] Determine the maximum and minimum values of $f$.

2010 Tuymaada Olympiad, 1

We have a set $M$ of real numbers with $|M|>1$ such that for any $x\in M$ we have either $3x-2\in M$ or $-4x+5\in M$. Show that $M$ is infinite.

Today's calculation of integrals, 899

Find the limit as below. \[\lim_{n\to\infty} \frac{(1^2+2^2+\cdots +n^2)(1^3+2^3+\cdots +n^3)(1^4+2^4+\cdots +n^4)}{(1^5+2^5+\cdots +n^5)^2}\]

2009 Putnam, B5

Let $ f: (1,\infty)\to\mathbb{R}$ be a differentiable function such that \[ f'(x)\equal{}\frac{x^2\minus{}\left(f(x)\right)^2}{x^2\left(\left(f(x)\right)^2\plus{}1\right)}\quad\text{for all }x>1.\] Prove that $ \displaystyle\lim_{x\to\infty}f(x)\equal{}\infty.$

2005 Grigore Moisil Urziceni, 3

Let be a sequence $ \left( a_n \right)_{n\ge 1} $ with $ a_1>0 $ and satisfying the equality $$ a_n=\sqrt{a_{n+1} -\sqrt{a_{n+1} +a_n}} , $$ for all natural numbers $ n. $ [b]a)[/b] Find a recurrence relation between two consecutive elements of $ \left( a_n \right)_{n\ge 1} . $ [b]b)[/b] Prove that $ \lim_{n\to\infty } \frac{\ln\ln a_n}{n} =\ln 2. $

1954 Putnam, B2

Let $s$ denote the sum of the alternating harmonic series. Rearrange this series as follows $$1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} +\frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \frac{1}{11} - \ldots$$ Assume as known that this series converges as well and denote its sum by $S$. Denote by $s_k, S_k$ respectively the $k$-th partial sums of both series. Prove that $$ \!\!\!\! \text{i})\; S_{3n} = s_{4n} +\frac{1}{2} s_{2n}.$$ $$ \text{ii}) \; S\ne s.$$

2007 ISI B.Math Entrance Exam, 3

For a natural number $n>1$ , consider the $n-1$ points on the unit circle $e^{\frac{2\pi ik}{n}}\ (k=1,2,...,n-1) $ . Show that the product of the distances of these points from $1$ is $n$.

1989 Bulgaria National Olympiad, Problem 2

Prove that the sequence $(a_n)$, where $$a_n=\sum_{k=1}^n\left\{\frac{\left\lfloor2^{k-\frac12}\right\rfloor}2\right\}2^{1-k},$$converges, and determine its limit as $n\to\infty$.

1984 Iran MO (2nd round), 1

Let $f$ and $g$ be two functions such that \[f(x)=\frac{1}{\lfloor | x | \rfloor}, \quad g(x)=\frac{1}{|\lfloor x \rfloor |}.\] Find the domains of $f$ and $g$ and then prove that \[\lim_{x \to -1^+} f(x)= \lim_{x \to 1^- } g(x).\]

2000 Turkey Team Selection Test, 3

Suppose $f:\mathbb{R} \to \mathbb{R}$ is a function such that \[|f(x+y)-f(x)-f(y)|\le 1\ \ \ \text{for all} \ \ x, y \in\mathbb R.\] Prove that there is a function $g:\mathbb{R}\to\mathbb{R}$ such that $|f(x)-g(x)|\le 1$ and $g(x+y)=g(x)+g(y)$ for all $x,y \in\mathbb R.$

2011 Tokyo Instutute Of Technology Entrance Examination, 1

Consider a curve $C$ on the $x$-$y$ plane expressed by $x=\tan \theta ,\ y=\frac{1}{\cos \theta}\left (0\leq \theta <\frac{\pi}{2}\right)$. For a constant $t>0$, let the line $l$ pass through the point $P(t,\ 0)$ and is perpendicular to the $x$-axis,intersects with the curve $C$ at $Q$. Denote by $S_1$ the area of the figure bounded by the curve $C$, the $x$-axis, the $y$-axis and the line $l$, and denote by $S_2$ the area of $\triangle{OPQ}$. Find $\lim_{t\to\infty} \frac{S_1-S_2}{\ln t}.$

2013 District Olympiad, 1

Calculate: $\underset{n\to \infty }{\mathop{\lim }}\,\int_{0}^{1}{{{e}^{{{x}^{n}}}}dx}$

2016 Mathematical Talent Reward Programme, MCQ: P 7

Tags: limit
Let $\{x\}$ denote the fractional part of $x$. Then $\lim \limits_{n\to \infty} \left\{ \left(1+\sqrt{2}\right)^{2n}\right\}$ equals [list=1] [*] 0 [*] 0.5 [*] 1 [*] Does not exists [/list]

2002 Tuymaada Olympiad, 1

A positive integer $c$ is given. The sequence $\{p_{k}\}$ is constructed by the following rule: $p_{1}$ is arbitrary prime and for $k\geq 1$ the number $p_{k+1}$ is any prime divisor of $p_{k}+c$ not present among the numbers $p_{1}$, $p_{2}$, $\dots$, $p_{k}$. Prove that the sequence $\{p_{k}\}$ cannot be infinite. [i]Proposed by A. Golovanov[/i]