This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 34

PEN M Problems, 33

The sequence $ \{x_{n}\}_{n \ge 1}$ is defined by \[ x_{1} \equal{} 2, x_{n \plus{} 1} \equal{} \frac {2 \plus{} x_{n}}{1 \minus{} 2x_{n}}\;\; (n \in \mathbb{N}). \] Prove that a) $ x_{n}\not \equal{} 0$ for all $ n \in \mathbb{N}$, b) $ \{x_{n}\}_{n \ge 1}$ is not periodic.

PEN M Problems, 18

Given is an integer sequence $\{a_n\}_{n \ge 0}$ such that $a_{0}=2$, $a_{1}=3$ and, for all positive integers $n \ge 1$, $a_{n+1}=2a_{n-1}$ or $a_{n+1}= 3a_{n} - 2a_{n-1}$. Does there exist a positive integer $k$ such that $1600 < a_{k} < 2000$?

PEN M Problems, 24

Let $k$ be a given positive integer. The sequence $x_n$ is defined as follows: $x_1 =1$ and $x_{n+1}$ is the least positive integer which is not in $\{x_{1}, x_{2},..., x_{n}, x_{1}+k, x_{2}+2k,..., x_{n}+nk \}$. Show that there exist real number $a$ such that $x_n = \lfloor an\rfloor$ for all positive integer $n$.

PEN M Problems, 6

The sequence $\{a_{n}\}_{n \ge 1}$ is defined by \[a_{1}=1, \; a_{n+1}=2a_{n}+\sqrt{3a_{n}^{2}+1}.\] Show that $a_{n}$ is an integer for every $n$.

PEN M Problems, 25

Let $\{a_{n}\}_{n \ge 1}$ be a sequence of positive integers such that \[0 < a_{n+1}-a_{n}\le 2001 \;\; \text{for all}\;\; n \in \mathbb{N}.\] Show that there are infinitely many pairs $(p, q)$ of positive integers such that $p>q$ and $a_{q}\; \vert \; a_{p}$.

PEN M Problems, 12

Let $k$ be a fixed positive integer. The sequence $\{a_{n}\}_{n\ge1}$ is defined by \[a_{1}=k+1, a_{n+1}=a_{n}^{2}-ka_{n}+k.\] Show that if $m \neq n$, then the numbers $a_{m}$ and $a_{n}$ are relatively prime.

PEN M Problems, 28

Let $\{u_{n}\}_{n \ge 0}$ be a sequence of integers satisfying the recurrence relation $u_{n+2}=u_{n+1}^2 -u_{n}$ $(n \in \mathbb{N})$. Suppose that $u_{0}=39$ and $u_{1}=45$. Prove that $1986$ divides infinitely many terms of this sequence.

PEN M Problems, 19

A sequence with first two terms equal $1$ and $24$ respectively is defined by the following rule: each subsequent term is equal to the smallest positive integer which has not yet occurred in the sequence and is not coprime with the previous term. Prove that all positive integers occur in this sequence.

PEN M Problems, 15

For a given positive integer $k$ denote the square of the sum of its digits by $f_{1}(k)$ and let $f_{n+1}(k)=f_{1}(f_{n}(k))$. Determine the value of $f_{1991}(2^{1990})$.